IEEE Trans Image Process. 2021;30:9470-9481. doi: 10.1109/TIP.2021.3126490. Epub 2021 Nov 18.
Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach.
细粒度视觉识别是将具有相似外观的物体分为子类,随着深度卷积神经网络的发展,细粒度视觉识别取得了巨大的进展。然而,处理不同子类之间的细微差异仍然是一个挑战。在本文中,我们从两个方面提出了一种统一的框架来解决这个问题,即构建特征级别的相互关系和捕捉部分级别的鉴别特征。这个名为 PArt-guided Relational Transformers (PART) 的框架,旨在通过自适应自然语言处理领域的 Transformer 模型,利用自动部分发现模块学习具有鉴别力的部分特征,并利用特征转换模块探索内在相关性。部分发现模块通过与梯度下降过程高度对应的方式,有效地发现具有鉴别力的区域。然后,第二个特征转换模块在全局嵌入和多个部分嵌入之间建立相关性,增强语义像素之间的空间相互作用。此外,我们的方法在推理时不依赖于额外的部分分支,在三个广泛使用的细粒度对象识别基准上取得了最先进的性能。实验结果和可解释性可视化表明了我们方法的有效性。