Suppr超能文献

一种用于治疗转换比例较高的确证性试验的修正加权对数秩检验。

A modified weighted log-rank test for confirmatory trials with a high proportion of treatment switching.

机构信息

Global Drug Development, Novartis Pharma A.G., Basel, Switzerland.

Statistical Innovation, Data Science & AI, AstraZeneca R&D, Gothenburg, Sweden.

出版信息

PLoS One. 2021 Nov 15;16(11):e0259178. doi: 10.1371/journal.pone.0259178. eCollection 2021.

Abstract

In confirmatory cancer clinical trials, overall survival (OS) is normally a primary endpoint in the intention-to-treat (ITT) analysis under regulatory standards. After the tumor progresses, it is common that patients allocated to the control group switch to the experimental treatment, or another drug in the same class. Such treatment switching may dilute the relative efficacy of the new drug compared to the control group, leading to lower statistical power. It would be possible to decrease the estimation bias by shortening the follow-up period but this may lead to a loss of information and power. Instead we propose a modified weighted log-rank test (mWLR) that aims at balancing these factors by down-weighting events occurring when many patients have switched treatment. As the weighting should be pre-specified and the impact of treatment switching is unknown, we predict the hazard ratio function and use it to compute the weights of the mWLR. The method may incorporate information from previous trials regarding the potential hazard ratio function over time. We are motivated by the RECORD-1 trial of everolimus against placebo in patients with metastatic renal-cell carcinoma where almost 80% of the patients in the placebo group received everolimus after disease progression. Extensive simulations show that the new test gives considerably higher efficiency than the standard log-rank test in realistic scenarios.

摘要

在确证性癌症临床试验中,根据监管标准,总生存期(OS)通常是意向治疗(ITT)分析中的主要终点。在肿瘤进展后,常见的情况是对照组的患者转而接受实验组治疗,或接受同一类别的其他药物。这种治疗转换可能会降低新药相对于对照组的相对疗效,从而降低统计学效力。通过缩短随访期,可以降低估计偏差,但这可能会导致信息和效力的损失。相反,我们提出了一种改进的加权对数秩检验(mWLR),旨在通过对许多患者已转换治疗的事件进行加权,平衡这些因素。由于权重应该是预先指定的,并且治疗转换的影响是未知的,我们预测了风险比函数,并使用它来计算 mWLR 的权重。该方法可以结合关于潜在风险比函数随时间变化的先前试验的信息。我们的动机来自于 RECORD-1 试验,即依维莫司对比安慰剂在转移性肾细胞癌患者中的应用,其中安慰剂组中几乎 80%的患者在疾病进展后接受了依维莫司治疗。广泛的模拟表明,在现实场景中,新的检验比标准对数秩检验具有更高的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0415/8592474/d0a1c50fe09f/pone.0259178.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验