Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, P. R. China.
Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, P. R. China.
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55747-55755. doi: 10.1021/acsami.1c17318. Epub 2021 Nov 15.
Precisely detecting epidermal pulse waves with pressure sensors is crucial for pulse-based personalized health-monitoring technologies. However, developing a pressure sensor that simultaneously demonstrates high sensitivity and an ultrabroad pressure range and a convenient fabrication process for large-scale production is a considerable challenge. Herein, by utilizing a commercial conductive fabric (CF) and a silica gel film, we develop a high-performance pressure sensor (HPPS) for the monitoring of human physiological signals. Based on convenient turnover formwork technology, the silica gel film was fabricated by replicating the microstructure of the sandpaper surface. This microstructure and the plain weave structure on the CF surface together provide a sharp increase in the contact-separation area and structural compressibility, which are beneficial for the enhancement of output performance. Made of these two materials, the graded microstructured HPPS holds high sensitivity (4.5 mV/Pa), an ultrabroad pressure range (0-30 kPa), a wide working frequency bandwidth (up to 35 Hz), decent stability (>50,000 cycles), and a simple fabrication process that is suitable for large-scale production. Given these noticeable features, the developed HPPS not only succeeds in precisely detecting subtle pulse waves on various positions of different people but can also objectively capture changes in cardiovascular parameters caused by exercise training at different intensities in real time. These findings exhibit the enormous potential application of HPPS in tracking an individual's health status and comprehensively evaluating exercise intensity.
利用压力传感器精确检测表皮脉搏波对于基于脉搏的个性化健康监测技术至关重要。然而,开发一种同时具有高灵敏度和超宽压力范围的压力传感器,并开发出适用于大规模生产的便捷制造工艺,这是一个相当大的挑战。在此,我们利用商业导电织物(CF)和硅胶薄膜,开发了一种用于监测人体生理信号的高性能压力传感器(HPPS)。基于便捷的翻转模板技术,通过复制砂纸表面的微观结构来制造硅胶薄膜。这种微观结构和 CF 表面的平纹结构共同提供了接触-分离面积和结构可压缩性的急剧增加,有利于提高输出性能。由这两种材料制成的分级微结构 HPPS 具有高灵敏度(4.5 mV/Pa)、超宽的压力范围(0-30 kPa)、宽的工作频率带宽(高达 35 Hz)、良好的稳定性(>50,000 次循环)和简单的制造工艺,适用于大规模生产。鉴于这些显著的特点,所开发的 HPPS 不仅成功地精确检测了不同人不同位置的细微脉搏波,而且还可以实时客观地捕捉到不同强度运动训练引起的心血管参数变化。这些发现展示了 HPPS 在跟踪个人健康状况和全面评估运动强度方面的巨大潜在应用。