Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
J Biol Chem. 2021 Dec;297(6):101407. doi: 10.1016/j.jbc.2021.101407. Epub 2021 Nov 12.
ClpAP, an ATP-dependent protease consisting of ClpA, a double-ring hexameric unfoldase of the ATPases associated with diverse cellular activities superfamily, and the ClpP peptidase, degrades damaged and unneeded proteins to support cellular proteostasis. ClpA recognizes many protein substrates directly, but it can also be regulated by an adapter, ClpS, that modifies ClpA's substrate profile toward N-degron substrates. Conserved tyrosines in the 12 pore-1 loops lining the central channel of the stacked D1 and D2 rings of ClpA are critical for degradation, but the roles of these residues in individual steps during direct or adapter-mediated degradation are poorly understood. Using engineered ClpA hexamers with zero, three, or six pore-1 loop mutations in each ATPases associated with diverse cellular activities superfamily ring, we found that active D1 pore loops initiate productive engagement of substrates, whereas active D2 pore loops are most important for mediating the robust unfolding of stable native substrates. In complex with ClpS, active D1 pore loops are required to form a high affinity ClpA•ClpS•substrate complex, but D2 pore loops are needed to "tug on" and remodel ClpS to transfer the N-degron substrate to ClpA. Overall, we find that the pore-1 loop tyrosines in D1 are critical for direct substrate engagement, whereas ClpS-mediated substrate delivery requires unique contributions from both the D1 and D2 pore loops. In conclusion, our study illustrates how pore loop engagement, substrate capture, and powering of the unfolding/translocation steps are distributed between the two rings of ClpA, illuminating new mechanistic features that may be common to double-ring protein unfolding machines.
ClpAP 是一种由 ClpA 和 ClpP 组成的 ATP 依赖性蛋白酶,其中 ClpA 是一种与多种细胞活动相关的 ATP 酶的双环六聚体解折叠酶,而 ClpP 是一种肽酶,可降解受损和不需要的蛋白质以支持细胞蛋白质稳态。ClpA 可直接识别许多蛋白质底物,但也可被一种接头蛋白 ClpS 调节,后者可改变 ClpA 的底物谱,使其更倾向于 N-末端降解底物。ClpA 堆叠的 D1 和 D2 环的中央通道中的 12 个孔 1 环中的保守酪氨酸对于降解至关重要,但这些残基在直接或接头介导的降解过程中的各个步骤中的作用知之甚少。使用带有工程化 ClpA 六聚体的孔 1 环突变,每个 ATPases associated with diverse cellular activities 超家族环中带有零、三或六个突变,我们发现活性 D1 孔环启动有活性的底物结合,而活性 D2 孔环对于介导稳定天然底物的强烈展开最为重要。在与 ClpS 形成复合物时,活性 D1 孔环需要形成高亲和力的 ClpA•ClpS•底物复合物,但 D2 孔环需要“拉动”并重塑 ClpS 以将 N-末端降解底物转移到 ClpA。总的来说,我们发现 D1 中的孔 1 环中的酪氨酸对于直接的底物结合至关重要,而 ClpS 介导的底物传递需要 D1 和 D2 孔环的独特贡献。总之,我们的研究说明了孔环结合、底物捕获以及展开/易位步骤的动力如何在 ClpA 的两个环之间分配,揭示了可能对双环蛋白展开机器普遍适用的新机制特征。