Suppr超能文献

0.55T 场强下基于自门控的 3D 螺旋桨 UTE 肺部成像技术

Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55T.

机构信息

Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA.

出版信息

Magn Reson Med. 2022 Apr;87(4):1784-1798. doi: 10.1002/mrm.29079. Epub 2021 Nov 16.

Abstract

PURPOSE

To develop an isotropic high-resolution stack-of-spirals UTE sequence for pulmonary imaging at 0.55 Tesla by leveraging a combination of robust respiratory-binning, trajectory correction, and concomitant-field corrections.

METHODS

A stack-of-spirals golden-angle UTE sequence was used to continuously acquire data for 15.5 minutes. The data was binned to a stable respiratory phase based on superoinferior readout self-navigator signals. Corrections for trajectory errors and concomitant field artifacts, along with image reconstruction with conjugate gradient SENSE, were performed inline within the Gadgetron framework. Finally, data were retrospectively reconstructed to simulate scan times of 5, 8.5, and 12 minutes. Image quality was assessed using signal-to-noise, image sharpness, and qualitative reader scores. The technique was evaluated in healthy volunteers, patients with coronavirus disease 2019 infection, and patients with lung nodules.

RESULTS

The technique provided diagnostic quality images with parenchymal lung SNR of 3.18 ± 0.0.60, 4.57 ± 0.87, 5.45 ± 1.02, and 5.89 ± 1.28 for scan times of 5, 8.5, 12, and 15.5 minutes, respectively. The respiratory binning technique resulted in significantly sharper images (p < 0.001) as measured with relative maximum derivative at the diaphragm. Concomitant field corrections visibly improved sharpness of anatomical structures away from iso-center. The image quality was maintained with a slight loss in SNR for simulated scan times down to 8.5 minutes. Inline image reconstruction and artifact correction were achieved in <5 minutes.

CONCLUSION

The proposed pulmonary imaging technique combined efficient stack-of-spirals imaging with robust respiratory binning, concomitant field correction, and trajectory correction to generate diagnostic quality images with 1.75 mm isotropic resolution in 8.5 minutes on a high-performance 0.55 Tesla system.

摘要

目的

通过结合稳健的呼吸分箱、轨迹校正和伴随场校正,开发一种用于 0.55T 肺部成像的各向同性高分辨率螺旋堆叠 UTE 序列。

方法

使用螺旋式金角 UTE 序列连续采集 15.5 分钟的数据。根据上下读数自导航信号,将数据分箱到稳定的呼吸相位。在 Gadgetron 框架内在线执行轨迹误差和伴随场伪影校正以及共轭梯度 SENSE 图像重建。最后,数据进行回顾性重建以模拟 5、8.5 和 12 分钟的扫描时间。使用信噪比、图像锐度和定性读者评分评估图像质量。该技术在健康志愿者、新冠病毒 2019 感染患者和肺结节患者中进行了评估。

结果

该技术提供了具有诊断质量的图像,实质肺 SNR 分别为 3.18±0.06、4.57±0.87、5.45±1.02 和 5.89±1.28,扫描时间分别为 5、8.5、12 和 15.5 分钟。呼吸分箱技术可显著提高图像锐度(p<0.001),以膈膜处的相对最大导数来衡量。伴随场校正明显改善了离等中心的解剖结构的清晰度。在模拟扫描时间降至 8.5 分钟时,图像质量保持不变,仅略有 SNR 损失。在线图像重建和伪影校正可在 5 分钟内完成。

结论

该方法将高效的螺旋堆叠成像与稳健的呼吸分箱、伴随场校正和轨迹校正相结合,在高性能 0.55T 系统上 8.5 分钟内生成具有 1.75mm 各向同性分辨率的诊断质量图像。

相似文献

1
Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55T.
Magn Reson Med. 2022 Apr;87(4):1784-1798. doi: 10.1002/mrm.29079. Epub 2021 Nov 16.
3
Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI.
Magn Reson Med. 2020 Apr;83(4):1208-1221. doi: 10.1002/mrm.27998. Epub 2019 Sep 30.
4
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Magn Reson Med. 2018 Jun;79(6):2954-2967. doi: 10.1002/mrm.26958. Epub 2017 Oct 11.
5
Lung MRI assessment with high-frequency noninvasive ventilation at 3 T.
Magn Reson Imaging. 2020 Dec;74:64-73. doi: 10.1016/j.mri.2020.09.006. Epub 2020 Sep 6.
6
UTE-SENCEFUL: first results for 3D high-resolution lung ventilation imaging.
Magn Reson Med. 2019 Apr;81(4):2464-2473. doi: 10.1002/mrm.27576. Epub 2018 Nov 4.
8
Single-spoke binning: Reducing motion artifacts in abdominal radial stack-of-stars imaging.
Magn Reson Med. 2023 May;89(5):1931-1944. doi: 10.1002/mrm.29576. Epub 2023 Jan 3.
9
Comparison of diagnostic quality of 3D ultrashort-echo-time techniques for pulmonary magnetic resonance imaging in free-breathing.
Acta Radiol. 2023 May;64(5):1851-1858. doi: 10.1177/02841851231151366. Epub 2023 Jan 30.

引用本文的文献

1
Characterizing extravascular lung water-A dual-contrast agent extracellular volume approach by cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2025;27(1):101883. doi: 10.1016/j.jocmr.2025.101883. Epub 2025 Mar 20.
2
Single breath-hold volumetric lung imaging at 0.55T using stack-of-spiral (SoS) out-in balanced SSFP.
Magn Reson Med. 2025 May;93(5):1999-2007. doi: 10.1002/mrm.30386. Epub 2024 Nov 28.
3
Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review.
Diagnostics (Basel). 2024 Jul 19;14(14):1564. doi: 10.3390/diagnostics14141564.
5
New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal.
MAGMA. 2024 Feb;37(1):1-14. doi: 10.1007/s10334-023-01123-w. Epub 2023 Oct 30.
6
[Research on a portable shielding-free ultra-low field magnetic resonance imaging system].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):829-836. doi: 10.7507/1001-5515.202303060.
7
Cardiac MRI at Low Field Strengths.
J Magn Reson Imaging. 2024 Feb;59(2):412-430. doi: 10.1002/jmri.28890. Epub 2023 Aug 2.
8
Low-field MRI: A report on the 2022 ISMRM workshop.
Magn Reson Med. 2023 Oct;90(4):1682-1694. doi: 10.1002/mrm.29743. Epub 2023 Jun 22.
9
Concomitant field compensation of spiral turbo spin-echo at 0.55 T.
MAGMA. 2023 Jul;36(3):465-475. doi: 10.1007/s10334-023-01103-0. Epub 2023 Jun 12.
10
Dynamic lung water MRI during exercise stress.
Magn Reson Med. 2023 Oct;90(4):1396-1413. doi: 10.1002/mrm.29716. Epub 2023 Jun 8.

本文引用的文献

1
Quantification of lung water density with UTE Yarnball MRI.
Magn Reson Med. 2021 Sep;86(3):1330-1344. doi: 10.1002/mrm.28800. Epub 2021 Apr 3.
2
Deblurring for spiral real-time MRI using convolutional neural networks.
Magn Reson Med. 2020 Dec;84(6):3438-3452. doi: 10.1002/mrm.28393. Epub 2020 Jul 25.
3
Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI.
Magn Reson Med. 2020 Nov;84(5):2364-2375. doi: 10.1002/mrm.28278. Epub 2020 Apr 14.
4
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI.
Radiology. 2019 Nov;293(2):384-393. doi: 10.1148/radiol.2019190452. Epub 2019 Oct 1.
5
Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI.
Magn Reson Med. 2020 Apr;83(4):1208-1221. doi: 10.1002/mrm.27998. Epub 2019 Sep 30.
6
An automated approach to fully self-gated free-running cardiac and respiratory motion-resolved 5D whole-heart MRI.
Magn Reson Med. 2019 Dec;82(6):2118-2132. doi: 10.1002/mrm.27898. Epub 2019 Jul 18.
7
Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones.
Magn Reson Med. 2019 Oct;82(4):1398-1411. doi: 10.1002/mrm.27825. Epub 2019 May 22.
8
Implementation of the FLORET UTE sequence for lung imaging.
Magn Reson Med. 2019 Sep;82(3):1091-1100. doi: 10.1002/mrm.27800. Epub 2019 May 13.
9
Dynamic off-resonance correction for spiral real-time MRI of speech.
Magn Reson Med. 2019 Jan;81(1):234-246. doi: 10.1002/mrm.27373. Epub 2018 Jul 29.
10
Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3D radial ultrashort echo time MRI.
J Magn Reson Imaging. 2018 May;47(5):1287-1297. doi: 10.1002/jmri.25877. Epub 2017 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验