Suppr超能文献

[便携式无屏蔽超低场磁共振成像系统的研究]

[Research on a portable shielding-free ultra-low field magnetic resonance imaging system].

作者信息

Zhang Yuxiang, He Wei, Yang Lei, He Yucheng, Wu Jiamin, Xu Zheng

机构信息

School of Electrical Engineering, Chongqing University, Chongqing 400044, P. R. China.

Shenzhen Academy of Aerospace Technology, Shenzhen 518057, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):829-836. doi: 10.7507/1001-5515.202303060.

Abstract

The portable light-weight magnetic resonance imaging system can be deployed in special occasions such as Intensive Care Unit (ICU) and ambulances, making it possible to implement bedside monitoring imaging systems, mobile stroke units and magnetic resonance platforms in remote areas. Compared with medium and high field imaging systems, ultra-low-field magnetic resonance imaging equipment utilizes light-weight permanent magnets, which are compact and easy to move. However, the image quality is highly susceptible to external electromagnetic interference without a shielded room and there are still many key technical problems in hardware design to be solved. In this paper, the system hardware design and environmental electromagnetic interference elimination algorithm were studied. Consequently, some research results were obtained and a prototype of portable shielding-free 50 mT magnetic resonance imaging system was built. The light-weight magnet and its uniformity, coil system and noise elimination algorithm and human brain imaging were verified. Finally, high-quality images of the healthy human brain were obtained. The results of this study would provide reference for the development and application of ultra-low-field magnetic resonance imaging technology.

摘要

便携式轻量化磁共振成像系统可部署在重症监护病房(ICU)和救护车等特殊场合,从而有可能在偏远地区实现床边监测成像系统、移动卒中单元和磁共振平台。与中高场成像系统相比,超低场磁共振成像设备采用轻量化永久磁铁,结构紧凑且便于移动。然而,在没有屏蔽室的情况下,图像质量极易受到外部电磁干扰,并且在硬件设计方面仍有许多关键技术问题有待解决。本文对系统硬件设计和环境电磁干扰消除算法进行了研究。因此,取得了一些研究成果,并构建了便携式无屏蔽50 mT磁共振成像系统的原型。对轻量化磁体及其均匀性、线圈系统、噪声消除算法和人脑成像进行了验证。最后,获得了健康人脑的高质量图像。本研究结果将为超低场磁共振成像技术的发展和应用提供参考。

相似文献

1
[Research on a portable shielding-free ultra-low field magnetic resonance imaging system].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):829-836. doi: 10.7507/1001-5515.202303060.
2
Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.
PLoS One. 2016 Jun 6;11(6):e0157040. doi: 10.1371/journal.pone.0157040. eCollection 2016.
4
A low-cost and shielding-free ultra-low-field brain MRI scanner.
Nat Commun. 2021 Dec 14;12(1):7238. doi: 10.1038/s41467-021-27317-1.
5
High-performance permanent magnet array design by a fast genetic algorithm (GA)-based optimization for low-field portable MRI.
J Magn Reson. 2022 Dec;345:107309. doi: 10.1016/j.jmr.2022.107309. Epub 2022 Oct 28.
6
Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI.
MAGMA. 2016 Aug;29(4):691-8. doi: 10.1007/s10334-016-0525-8. Epub 2016 Feb 9.
7
A portable scanner for magnetic resonance imaging of the brain.
Nat Biomed Eng. 2021 Mar;5(3):229-239. doi: 10.1038/s41551-020-00641-5. Epub 2020 Nov 23.
8
Tackling SNR at low-field: a review of hardware approaches for point-of-care systems.
MAGMA. 2023 Jul;36(3):375-393. doi: 10.1007/s10334-023-01100-3. Epub 2023 May 18.
10
Optimization design of a permanent magnet used for a low field (0.2 T) movable MRI system.
MAGMA. 2023 Jul;36(3):409-418. doi: 10.1007/s10334-023-01090-2. Epub 2023 Apr 20.

引用本文的文献

1
[Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Feb 25;42(1):174-180. doi: 10.7507/1001-5515.202401068.

本文引用的文献

1
Denoise ultra-low-field 3D magnetic resonance images using a joint signal-image domain filter.
J Magn Reson. 2022 Nov;344:107319. doi: 10.1016/j.jmr.2022.107319. Epub 2022 Oct 22.
2
[Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Oct 25;39(5):887-896. doi: 10.7507/1001-5515.202109057.
3
A CNN Based Software Gradiometer for Electromagnetic Background Noise Reduction in Low Field MRI Applications.
IEEE Trans Med Imaging. 2022 May;41(5):1007-1016. doi: 10.1109/TMI.2022.3147450. Epub 2022 May 2.
4
A low-cost and shielding-free ultra-low-field brain MRI scanner.
Nat Commun. 2021 Dec 14;12(1):7238. doi: 10.1038/s41467-021-27317-1.
5
Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55T.
Magn Reson Med. 2022 Apr;87(4):1784-1798. doi: 10.1002/mrm.29079. Epub 2021 Nov 16.
6
Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage.
Nat Commun. 2021 Aug 25;12(1):5119. doi: 10.1038/s41467-021-25441-6.
7
Use of 2.1 MHz MRI scanner for brain imaging and its preliminary results in stroke.
J Magn Reson. 2020 Oct;319:106829. doi: 10.1016/j.jmr.2020.106829. Epub 2020 Sep 10.
9
Optimization of a Close-Fitting Volume RF Coil for Brain Imaging at 6.5 mT Using Linear Programming.
IEEE Trans Biomed Eng. 2021 Apr;68(4):1106-1114. doi: 10.1109/TBME.2020.3002077. Epub 2021 Mar 18.
10
In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array.
Magn Reson Med. 2021 Jan;85(1):495-505. doi: 10.1002/mrm.28396. Epub 2020 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验