Ketkar Priyanka M, Epps Thomas H
Acc Chem Res. 2021 Dec 7;54(23):4342-4353. doi: 10.1021/acs.accounts.1c00468. Epub 2021 Nov 16.
ConspectusIon-containing solid block polymer (BP) electrolytes can self-assemble into microphase-separated domains to facilitate the independent optimization of ion conduction and mechanical stability; this assembly behavior has the potential to improve the functionality and safety of lithium-ion batteries over liquid electrolytes to meet future demands (e.g., large capacities and long lifetimes) in various applications. However, significant enhancements in the ionic conductivity and processability of BPs must be realized for BP-based electrolytes to become robust alternatives in commercial devices. Toward this end, the controlled modification of BP electrolytes' intra-domain (nanometer-scale) and multi-grain (micrometer-scale) structure is one viable approach; intra-domain ion transport and segmental compatibility (related to the effective Flory-Huggins parameter, ) can be increased by tuning the ion and monomer-segment distributions, and the morphology can be selected such that the multi-grain transport is less sensitive to grain size and orientation.To highlight the characteristics of intra-domain structure that promote efficient ion transport, this Account begins by describing the relationship between BP thermodynamics (namely, and the statistical segment length, , which is indicative of chain stiffness) and local ion concentration. These thermodynamic insights are vital because they inform the selection of synthesis and formulation variables, such as polymer and ion chemistry, polymer molecular weight and composition, and ion concentration, which boost electrolyte performance. In addition to its relationship with local ion transport, is also an important factor with respect to electrolyte processability. For example, a reduced can allow BP electrolytes to be processed at lower temperatures (i.e., lower energy input), with less solvent (i.e., reduced waste), and/or for shorter times (i.e., higher throughput) yet still form desired nanostructures. This Account also examines the impact of electrolyte preparation and processing on the ion transport across nanostructured grains because of grain size and orientation. As morphologies with a 3D-connected versus 2D-connected conducting phase show different sensitivities to conductivity losses that can occur because of the fabrication methods, it is necessary to account for electrolyte processing effects when probing ion transport.The intra-domain and micrometer-scale structure also can be tuned using either tapered BPs (macromolecules with modified monomer-segment composition profiles between two homogeneous blocks) or blends of BPs and homopolymers, independent of the BP molecular weight and composition, as detailed herein. The application of TBPs or BP/HP blends as ion-conducting materials leads to improved ion transport, reduced , and greater availability of morphologies with 3D connectivity relative to traditional (non-tapered and unblended) BP electrolytes. This feature results from the fact that ion transport is related more closely to the monomer-segment distributions within a domain than the overall nanoscale morphology or average polymer/ion mobilities. Taken together, this Account describes how ion transport and processability are influenced by BP architecture and nanostructural features, and it provides avenues to tune nanoassemblies that can contribute to improved lithium-ion battery technologies to meet future demands.
综述
含离子的固体嵌段聚合物(BP)电解质可自组装成微相分离域,以促进离子传导和机械稳定性的独立优化;这种组装行为有可能在功能和安全性方面超越液体电解质,提升锂离子电池性能,满足各种应用(如大容量和长寿命)的未来需求。然而,要使基于BP的电解质成为商业设备中可靠的替代品,必须大幅提高BP的离子电导率和可加工性。为此,可控修饰BP电解质的域内(纳米尺度)和多晶(微米尺度)结构是一种可行的方法;通过调整离子和单体链段分布,可以增加域内离子传输和链段相容性(与有效Flory-Huggins参数有关),并且可以选择形态,使多晶传输对晶粒尺寸和取向不太敏感。
为突出促进高效离子传输的域内结构特征,本综述首先描述BP热力学(即与统计链段长度,它表示链的刚性)与局部离子浓度之间的关系。这些热力学见解至关重要,因为它们为合成和配方变量(如聚合物和离子化学、聚合物分子量和组成以及离子浓度)的选择提供依据,这些变量可提高电解质性能。除了与局部离子传输的关系外,对于电解质的可加工性也是一个重要因素。例如,降低可以使BP电解质在较低温度下(即较低的能量输入)、使用较少的溶剂(即减少浪费)和/或较短的时间内(即更高的产量)进行加工,同时仍能形成所需的纳米结构。本综述还研究了电解质制备和加工对跨纳米结构晶粒的离子传输的影响,因为晶粒尺寸和取向会对此产生影响。由于具有三维连通与二维连通导电相的形态对因制造方法可能发生的电导率损失表现出不同的敏感性,因此在研究离子传输时必须考虑电解质加工的影响。
域内和微米尺度结构也可以使用渐变BP(在两个均匀嵌段之间具有修饰的单体链段组成分布的大分子)或BP与均聚物的共混物进行调整,这与BP的分子量和组成无关,本文将详细介绍。与传统(非渐变和未共混)BP电解质相比,将渐变BP或BP/均聚物共混物用作离子导电材料可改善离子传输、降低,并增加具有三维连通性的形态的可用性。这一特性源于离子传输与域内单体链段分布的关系比与整体纳米尺度形态或平均聚合物/离子迁移率的关系更为密切。综上所述,本综述描述了离子传输和可加工性如何受到BP结构和纳米结构特征的影响,并提供了调整纳米组装体的途径,这有助于改进锂离子电池技术以满足未来需求。