Doyle Emily S, Mirmira Priyadarshini, Ma Peiyuan, Vu Minh Canh, Hixson-Wells Trinity, Kumar Ritesh, Amanchukwu Chibueze V
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
Chem Mater. 2024 May 9;36(10):5063-5076. doi: 10.1021/acs.chemmater.4c00199. eCollection 2024 May 28.
Solid-state polymer electrolytes can enable the safe operation of high energy density lithium metal batteries; unfortunately, they have low ionic conductivity and poor redox stability at electrode interfaces. Fluorinated ether polymer electrolytes are a promising approach because the ether units can solvate and conduct ions, while the fluorinated moieties can increase oxidative stability. However, current perfluoropolyether (PFPE) electrolytes exhibit deficient lithium-ion coordination and ion transport. Here, we incorporate cross-linked poly(ethylene glycol) (PEG) units within the PFPE matrix and increase the polymer blend electrolyte conductivity by 6 orders of magnitude as compared to pure PFPE at 60 °C from 1.55 × 10 to 2.26 × 10 S/cm. Blending varying ratios of PEG and PFPE induces microscale phase separation, and we show the impact of morphology on ion solvation and dynamics in the electrolyte. Spectroscopy and simulations show weak ion-PFPE interactions, which promote salt phase segregation into-and ion transport within-the PEG domain. These polymer electrolytes show promise for use in high-voltage lithium metal batteries with improved Li|Li cycling due to enhanced mechanical properties and high-voltage stability beyond 6 V versus Li/Li. Our work provides insights into transport and stability in fluorinated polymer electrolytes for next-generation batteries.
固态聚合物电解质能够实现高能量密度锂金属电池的安全运行;不幸的是,它们在电极界面处离子电导率低且氧化还原稳定性差。氟化醚聚合物电解质是一种很有前景的方法,因为醚单元可以溶剂化并传导离子,而氟化部分可以提高氧化稳定性。然而,目前的全氟聚醚(PFPE)电解质表现出锂离子配位不足和离子传输缺陷。在此,我们在PFPE基质中引入交联聚乙二醇(PEG)单元,与60℃下的纯PFPE相比,聚合物共混电解质的电导率提高了6个数量级,从1.55×10提升至2.26×10 S/cm。混合不同比例的PEG和PFPE会导致微观相分离,并且我们展示了形态对电解质中离子溶剂化和动力学的影响。光谱学和模拟表明离子与PFPE之间的相互作用较弱,这促进了盐相分离进入PEG区域并在其中进行离子传输。这些聚合物电解质有望用于高压锂金属电池,由于机械性能增强以及相对于Li/Li在6V以上具有高电压稳定性,从而改善Li|Li循环。我们的工作为下一代电池的氟化聚合物电解质中的传输和稳定性提供了见解。