Suppr超能文献

全聚合物纳米结构固体电解质的设计:进展与展望

Designing All-Polymer Nanostructured Solid Electrolytes: Advances and Prospects.

作者信息

Glynos Emmanouil, Pantazidis Christos, Sakellariou Georgios

机构信息

Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, 71110 Heraklion, Crete GR, Greece.

Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.

出版信息

ACS Omega. 2020 Feb 10;5(6):2531-2540. doi: 10.1021/acsomega.9b04098. eCollection 2020 Feb 18.

Abstract

Multi-phase nanostructured polymer electrolytes, where the one phase conducts ions while the other imparts the desired mechanical properties, are currently the most promising candidates for solid-state electrolytes in high-density lithium metal batteries. In contrast to homogeneous polymer electrolytes, where ion transport is coupled with polymer segmental dynamics and any attempt to improve conductivity via faster polymer motions results in a decrease in stiffness, nanostructured materials efficiently decouple these two antagonistic parameters. Nevertheless, for reasons discussed herein the synthesis of a polymer electrolyte that simultaneously has a shear modulus of ' ≈ GPa and an ion conductivity of σ > 10 S/cm (in the case dual ion conductor) or of σ > 10 S/cm (in the case of single-ion conductor) remains a challenge. This review focuses on recent designing strategies for the synthesis of all-polymer nanostructured electrolytes, and protocols for introducing a single-ion character in such materials.

摘要

多相纳米结构聚合物电解质,其中一相传导离子而另一相赋予所需的机械性能,目前是高密度锂金属电池中固态电解质最有前途的候选者。与均质聚合物电解质不同,在均质聚合物电解质中离子传输与聚合物链段动力学相关联,并且任何通过更快的聚合物运动来提高电导率的尝试都会导致刚度降低,而纳米结构材料有效地解耦了这两个相互对立的参数。然而,由于本文所讨论的原因,合成一种同时具有约1 GPa的剪切模量和σ>10 S/cm的离子电导率(双离子导体情况)或σ>10 S/cm的离子电导率(单离子导体情况)的聚合物电解质仍然是一项挑战。本综述重点关注全聚合物纳米结构电解质合成的最新设计策略,以及在此类材料中引入单离子特性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c451/7033665/200153cbc8ef/ao9b04098_0004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验