Suppr超能文献

3D打印具有高模量和高导电性的纳米结构固体聚合物电解质

3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity.

作者信息

Lee Kenny, Shang Yuan, Bobrin Valentin A, Kuchel Rhiannon, Kundu Dipan, Corrigan Nathaniel, Boyer Cyrille

机构信息

Cluster for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW, 2052, Australia.

School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.

出版信息

Adv Mater. 2022 Oct;34(42):e2204816. doi: 10.1002/adma.202204816. Epub 2022 Sep 22.

Abstract

The development of advanced solid-state energy-storage devices is contingent upon finding new ways to produce and manufacture scalable, high-modulus solid-state electrolytes that can simultaneously provide high ionic conductivity and robust mechanical integrity. In this work, an efficient one-step process to manufacture solid polymer electrolytes composed of nanoscale ion-conducting channels embedded in a rigid crosslinked polymer matrix via Digital Light Processing 3D printing is reported. A visible-light-mediated polymerization-induced microphase-separation approach is utilized, which produces materials with two chemically independent nanoscale domains with highly tunable nanoarchitectures. By producing materials containing a poly(ethylene oxide) domain swelled with an ionic liquid, robust solid polymer electrolytes with outstanding room-temperature (22 °C) shear modulus (G' > 10 Pa) and ionic conductivities up to σ = 3 × 10 S cm are achieved. The nanostructured 3D-printed electrolytes are fabricated into a custom geometry and employed in a symmetric carbon supercapacitor, demonstrating the scalability of the fabrication and the functionality of the electrolyte. Critically, these high-performance materials are manufactured on demand using inexpensive and commercially available 3D printers, which allows the facile modular design of solid polymer electrolytes with custom geometries.

摘要

先进固态储能装置的发展取决于找到新的方法来生产和制造可扩展的、高模量的固态电解质,这些电解质能够同时提供高离子导电性和强大的机械完整性。在这项工作中,报道了一种通过数字光处理3D打印制造由嵌入刚性交联聚合物基质中的纳米级离子导电通道组成的固体聚合物电解质的高效一步法。利用了一种可见光介导的聚合诱导微相分离方法,该方法生产出具有两个化学独立的纳米级域且纳米结构高度可调的材料。通过生产含有用离子液体溶胀的聚环氧乙烷域的材料,获得了具有出色室温(22°C)剪切模量(G' > 10 Pa)和高达σ = 3 × 10 S cm离子电导率的坚固固体聚合物电解质。将纳米结构的3D打印电解质制成定制几何形状,并应用于对称碳超级电容器中,证明了制造的可扩展性和电解质的功能性。至关重要的是,这些高性能材料使用廉价的商用3D打印机按需制造,这使得能够轻松地对具有定制几何形状的固体聚合物电解质进行模块化设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验