Sharma Pratigya, Minakshi Sundaram Manickam, Watcharatharapong Teeraphat, Jungthawan Sirichok, Ahuja Rajeev
College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia.
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56116-56130. doi: 10.1021/acsami.1c16287. Epub 2021 Nov 16.
The ability to tune the interfacial region in core-shell nanocomposites with a surface reconstruction as a source for surface energy (de)stabilization is presented. We consider Zn-doped nickel molybdate (NiMoO) (ZNM) as a core crystal structure and AWO (A = Co or Mg) as a shell surface. Based on the density-functional theory method, the interfacial models of Zn-doped NiMoO@AWO (ZNM@AW) core@shell structures are simulated and revealed to undergo surface reconstruction on the (-110) and (-202) surfaces of the AW shells, where the surface degradation of ZNM@MW(-110) is observed. The theoretical simulation is validated against the electrochemical performance of supercapacitor studies. To verify, we synthesize the hierarchical ZNM@AW core@shell semiconductor structured nanocomposites grown on a nickel foam conductive substrate using a facile and green two-step hydrothermal method. The morphology and chemical and electrochemical properties of the hierarchically structured nanocomposites are characterized in detail. The performance of the core@shell is significantly affected by the chosen intrinsic properties of metal oxides and exhibited high performance compared to a single-component system in supercapacitors. The proposed asymmetric device, Zn-doped NiMoO@CoWO (ZNM@CW)||activated carbon, exhibits a superior pseudo-capacitance, delivering a high areal capacitance of 0.892 F cm at a current density of 2 mA cm and an excellent cycling stability of 96% retention of its initial capacitance after 1000 charge-discharge cycles. These fundamental theoretical and experimental insights with the extent of the surface reconstruction sufficiently explain the storage properties of the studied materials.
本文介绍了一种通过表面重构来调节核壳纳米复合材料界面区域的能力,以此作为表面能(去)稳定化的来源。我们将锌掺杂钼酸镍(NiMoO)(ZNM)视为核心晶体结构,将AWO(A = Co或Mg)视为壳层表面。基于密度泛函理论方法,模拟了锌掺杂NiMoO@AWO(ZNM@AW)核壳结构的界面模型,结果表明在AW壳层的(-110)和(-202)表面会发生表面重构,其中观察到ZNM@MW(-110)的表面降解。通过超级电容器研究的电化学性能验证了理论模拟结果。为了进行验证,我们采用简便绿色的两步水热法,在泡沫镍导电基底上合成了分级ZNM@AW核壳半导体结构纳米复合材料。详细表征了分级结构纳米复合材料的形貌、化学和电化学性质。核壳结构的性能受到所选金属氧化物固有特性的显著影响,与单组分体系相比,在超级电容器中表现出高性能。所提出的不对称器件,锌掺杂NiMoO@CoWO(ZNM@CW)||活性炭,表现出优异的赝电容,在电流密度为2 mA cm时,面积电容高达0.892 F cm,在1000次充放电循环后,初始电容保留率为96%,具有出色的循环稳定性。这些关于表面重构程度的基本理论和实验见解充分解释了所研究材料的储能特性。