Nawaz Saima, Khan Yaqoob, Khalid Sadia, Malik Mohammad Azad, Siddiq Muhammad
Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan.
RSC Adv. 2023 Oct 2;13(41):28785-28797. doi: 10.1039/d3ra04153k. eCollection 2023 Sep 26.
Hybrid composites of molybdenum disulfide (MoS), graphene nanoplatelets (GNPs) and polyaniline (PANI)/polypyrrole (PPy) have been synthesized as cost-effective electrode materials for supercapacitors. We have produced MoS from molybdenum dithiocarbamate by a melt method in an inert environment and then used a liquid exfoliation method to form its composite with graphene nanoplatelets (GNPs) and polymers (PANI and PPy). The MoS melt/GNP ratio in the resultant composites was 1 : 3 and the polymer was 10% by wt. of the original composite. XRD (X-ray diffraction analysis) confirmed the formation of MoS and SEM (scanning electron microscopy) revealed the morphology of the synthesized materials. The electrochemical charge storage performance of the synthesized composite materials was assessed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCCD) measurements. Resultant composites showed enhanced electrochemical performances (specific capacitance = 236.23 F g, energy density = 64.31 W h kg and power density = 3858.42 W kg for MoS melt 5 mPP at a current density of 0.57 A g and had 91.87% capacitance retention after 10 000 charge-discharge cycles) as compared to the produced MoS; thus, they can be utilized as electrode materials for supercapacitors.
二硫化钼(MoS)、石墨烯纳米片(GNPs)与聚苯胺(PANI)/聚吡咯(PPy)的混合复合材料已被合成,作为超级电容器的经济高效电极材料。我们通过在惰性环境中采用熔融法由二硫代钼酸酯制备了MoS,然后使用液相剥离法将其与石墨烯纳米片(GNPs)和聚合物(PANI和PPy)形成复合材料。所得复合材料中MoS熔体与GNP的比例为1∶3,聚合物占原始复合材料重量的10%。X射线衍射分析(XRD)证实了MoS的形成,扫描电子显微镜(SEM)揭示了合成材料的形态。通过循环伏安法(CV)、电化学阻抗谱(EIS)和恒电流充放电(GCCD)测量对合成复合材料的电化学电荷存储性能进行了评估。与制备的MoS相比,所得复合材料表现出增强的电化学性能(在电流密度为0.57 A g时,MoS熔体5 mPP的比电容 = 236.23 F g,能量密度 = 64.31 W h kg,功率密度 = 3858.42 W kg,在10000次充放电循环后电容保持率为91.87%);因此,它们可作为超级电容器的电极材料。