Suppr超能文献

高比表面积介孔硅孔内的聚苯胺作为超级电容器的复合电极材料。

Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors.

作者信息

Nawaz Saima, Khan Yaqoob, Abdelmohsen Shaimaa A M, Khalid Sadia, Björk Emma M, Rasheed Muhammad Asim, Siddiq M

机构信息

Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan

Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan

出版信息

RSC Adv. 2022 Jun 10;12(27):17228-17236. doi: 10.1039/d2ra01829b. eCollection 2022 Jun 7.

Abstract

Mesoporous silicon (mSi) obtained by the magnesiothermic reduction of mesoporous silica was used to deposit polyaniline (PANI) in its pores, the composite was tested for its charge storage application for high performance supercapacitor electrodes. The mesoporous silica as confirmed by Small Angle X-ray Scattering (SAXS) has a Brunauer-Emmett-Teller (BET) surface area of 724 mg and mean pore size of 5 nm. After magnesiothermic reduction to mSi, the BET surface area is reduced to 348 mg but the mesoporousity is retained with a mean pore size of 10 nm. The BET surface area of mesoporous silicon is among the highest for porous silicon prepared/reduced from silica. polymerization of PANI inside the pores of mSi was achieved by controlling the polymerization conditions. As a supercapacitor electrode, the mSi-PANI composite exhibits better charge storage performance as compared to pure PANI and mesoporous silica-PANI composite electrodes. Enhanced electrochemical performance of the mSi-PANI composite is attributed to the high surface mesoporous morphology of mSi with a network structure containing abundant mesopores enwrapped by an electrochemically permeable polyaniline matrix.

摘要

通过介孔二氧化硅的镁热还原得到的介孔硅(mSi)用于在其孔中沉积聚苯胺(PANI),测试了该复合材料在高性能超级电容器电极电荷存储方面的应用。经小角X射线散射(SAXS)证实,介孔二氧化硅的比表面积为724mg,平均孔径为5nm。镁热还原为mSi后,比表面积降至348mg,但介孔结构得以保留,平均孔径为10nm。介孔硅的比表面积在由二氧化硅制备/还原得到的多孔硅中处于较高水平。通过控制聚合条件,实现了mSi孔内PANI的聚合。作为超级电容器电极,与纯PANI和介孔二氧化硅-PANI复合电极相比,mSi-PANI复合材料表现出更好的电荷存储性能。mSi-PANI复合材料电化学性能的增强归因于mSi的高表面介孔形态,其网络结构包含由电化学可渗透的聚苯胺基质包裹的丰富介孔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/896e/9185315/2a60a5f47cdc/d2ra01829b-f1.jpg

相似文献

1
Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors.
RSC Adv. 2022 Jun 10;12(27):17228-17236. doi: 10.1039/d2ra01829b. eCollection 2022 Jun 7.
3
Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7501-8. doi: 10.1021/am4018016. Epub 2013 Jul 24.
4
Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.
ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6093-100. doi: 10.1021/acsami.6b00207. Epub 2016 Feb 25.
5
Facile synthesis of multifunctional zinc vanadate/polyaniline composite for photocatalytic degradation and supercapacitor applications.
Chemosphere. 2022 Nov;307(Pt 4):136123. doi: 10.1016/j.chemosphere.2022.136123. Epub 2022 Aug 20.
6
Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films.
ACS Appl Mater Interfaces. 2013 Sep 25;5(18):9186-93. doi: 10.1021/am402702y. Epub 2013 Sep 13.
7
Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
Heliyon. 2021 Jun 25;7(7):e07407. doi: 10.1016/j.heliyon.2021.e07407. eCollection 2021 Jul.
8
Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19063-19073. doi: 10.1021/acsami.6b16447. Epub 2017 May 25.
10
Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30212-30224. doi: 10.1021/acsami.6b10099. Epub 2016 Oct 26.

本文引用的文献

2
The role of the double layer for the pseudocapacitance of the hydrogen adsorption on platinum.
Sci Rep. 2022 Mar 1;12(1):3375. doi: 10.1038/s41598-022-07411-0.
4
Tuning the Nanoparticle Interfacial Properties and Stability of the Core-Shell Structure in Zn-Doped NiMoO@AWO.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56116-56130. doi: 10.1021/acsami.1c16287. Epub 2021 Nov 16.
5
MIL-96-Al for Li-S Batteries: Shape or Size?
Adv Mater. 2022 Jan;34(4):e2107836. doi: 10.1002/adma.202107836. Epub 2021 Dec 8.
6
MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors.
Angew Chem Int Ed Engl. 2021 Nov 22;60(48):25318-25322. doi: 10.1002/anie.202112381. Epub 2021 Oct 21.
7
Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li-S Battery.
Adv Mater. 2021 Nov;33(45):e2105163. doi: 10.1002/adma.202105163. Epub 2021 Sep 23.
9
Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications.
Small. 2019 Nov;15(48):e1903780. doi: 10.1002/smll.201903780. Epub 2019 Oct 30.
10
Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.
Adv Sci (Weinh). 2017 Nov 15;5(1):1700322. doi: 10.1002/advs.201700322. eCollection 2018 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验