Bas Ekin Esme, Garcia Alvarez Karen Marlenne, Schneemann Andreas, Heine Thomas, Golze Dorothea
Chair of Theoretical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
Helmholtz-Zentrum Dresden-Rossendorf, HZDR, 01328 Dresden, Germany.
J Chem Theory Comput. 2024 Nov 12;20(21):9547-9561. doi: 10.1021/acs.jctc.4c01021. Epub 2024 Oct 20.
Layered framework materials, a rapidly advancing class of porous materials, are composed of molecular components stitched together via covalent bonds and are usually synthesized through wet-chemical methods. Computational infrared (IR) and Raman spectra are among the most important characterization tools for this material class. Besides the known spectra of the molecular building blocks and the solvent, they allow for monitoring of the framework formation during synthesis. Therefore, they need to capture the additional peaks from host-guest interactions and the bands from emerging bonds between the molecular building blocks, verifying the successful synthesis of the desired material. In this work, we propose a robust computational framework based on molecular dynamics (AIMD), where we compute IR and Raman spectra from the time-correlation functions of dipole moments and polarizability tensors, respectively. As a case study, we apply our methodology to a covalent organic framework (COF) material, COF-1, and present its AIMD-computed IR and Raman spectra with and without 1,4-dioxane solvent molecules in its pores. To determine robust settings, we meticulously validate our model and explore how stacking disorder and different methods for computing dipole moments and polarizabilities affect IR and Raman intensities. Using our robust computational protocol, we achieve excellent agreement with experimental data. Furthermore, we illustrate how the computed spectra can be dissected into individual contributions from the solvent molecules, the molecular building blocks of COF-1, and the bonds connecting them.
层状框架材料是一类快速发展的多孔材料,由通过共价键缝合在一起的分子成分组成,通常通过湿化学方法合成。计算红外(IR)光谱和拉曼光谱是这类材料最重要的表征工具之一。除了分子结构单元和溶剂的已知光谱外,它们还能监测合成过程中的框架形成。因此,它们需要捕捉来自主客体相互作用的额外峰以及分子结构单元之间新出现的键的谱带,以验证所需材料的成功合成。在这项工作中,我们提出了一个基于分子动力学(AIMD)的强大计算框架,在该框架中,我们分别从偶极矩和极化率张量的时间相关函数计算红外光谱和拉曼光谱。作为一个案例研究,我们将我们的方法应用于一种共价有机框架(COF)材料COF-1,并展示了其在孔中有无1,4-二氧六环溶剂分子情况下的AIMD计算的红外光谱和拉曼光谱。为了确定稳健的设置,我们精心验证了我们的模型,并探索了堆积无序以及计算偶极矩和极化率的不同方法如何影响红外和拉曼强度。使用我们稳健的计算协议,我们与实验数据取得了极好的一致性。此外,我们还说明了如何将计算得到的光谱分解为溶剂分子、COF-1的分子结构单元以及连接它们的键的各自贡献。