Suppr超能文献

用于脊髓应用的仿生支架具有刚度依赖性免疫调节和神经营养特性。

Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffness-Dependent Immunomodulatory and Neurotrophic Characteristics.

作者信息

Woods Ian, O'Connor Cian, Frugoli Lisa, Kerr Seán, Gutierrez Gonzalez Javier, Stasiewicz Martyna, McGuire Tara, Cavanagh Brenton, Hibbitts Alan, Dervan Adrian, O'Brien Fergal J

机构信息

Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77, Ireland.

Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, 123 St Stephen's Green, Dublin 2, D02YN77, Ireland.

出版信息

Adv Healthc Mater. 2022 Feb;11(3):e2101663. doi: 10.1002/adhm.202101663. Epub 2021 Nov 25.

Abstract

After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro. A synergistic mix of collagen-IV and fibronectin (Coll-IV/Fn) is found to optimally enhance axonal extension from neuronal cell lines (SHSY-5Y and NSC-34) and induce morphological features typical of quiescent astrocytes. This optimal composition is incorporated into hyaluronic acid scaffolds with aligned pore architectures but varying stiffnesses (0.8-3 kPa). Scaffolds with biomimetic mechanical properties (<1 kPa), functionalized with Coll-IV/Fn, not only modulate primary astrocyte behavior but also stimulate the production of anti-inflammatory cytokine IL-10 in a stiffness-dependent manner. Seeded SHSY-5Y neurons generate distributed neuronal networks, while softer biomimetic scaffolds promote axonal outgrowth in an ex vivo model of axonal regrowth. These results indicate that the interaction of stiffness and biomaterial composition plays an essential role in vitro in generating repair-critical cellular responses and demonstrates the potential of biomimetic scaffold design.

摘要

脊髓损伤(SCI)后,组织工程支架为跨越损伤部位的再生提供了潜在桥梁,并通过促再生信号支持修复。模仿天然组织物理化学性质的理想生物材料支架有潜力提供内在的营养信号,同时将有害炎症降至最低。为应对这一挑战,借鉴脊髓结构,在体外比较天然脊髓成分的促再生信号传导能力。发现胶原蛋白-IV和纤连蛋白(Coll-IV/Fn)的协同混合物能最佳地增强神经元细胞系(SHSY-5Y和NSC-34)的轴突延伸,并诱导静止星形胶质细胞的典型形态特征。这种最佳成分被整合到具有排列孔隙结构但刚度不同(0.8-3 kPa)的透明质酸支架中。具有仿生力学性能(<1 kPa)且用Coll-IV/Fn功能化的支架不仅能调节原代星形胶质细胞的行为,还能以刚度依赖的方式刺激抗炎细胞因子IL-10的产生。接种的SHSY-5Y神经元形成分布式神经网络,而较软的仿生支架在轴突再生的体外模型中促进轴突生长。这些结果表明,刚度与生物材料成分的相互作用在体外产生关键修复细胞反应中起着重要作用,并证明了仿生支架设计的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验