Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Acta Biomater. 2018 Sep 1;77:15-27. doi: 10.1016/j.actbio.2018.06.038. Epub 2018 Jul 3.
Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. However, how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. Here, a polycaprolactone (PCL)/PSA hybrid nanofiber scaffold encapsulating glucocorticoid methylprednisolone (MP) is developed for SCI treatment. Rat models with spinal cord transection is established and the PCL/PSA/MP scaffold is transplanted into lesion area. PCL/PSA/MP scaffold decreases tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release by inhibiting ionized calcium-binding adapter molecule 1 (Iba1) positive microglia/macrophage activation and reduces apoptosis-associated Caspase-3 protein expression. In addition, the PCL/PSA/MP scaffold inhibits axonal demyelination and glial fibrillary acidic protein (GFAP) expression, increases neurofilament 200 (NF-200) expression and improves functional outcome by Basso, Beattie and Bresnahan (BBB) test. These results demonstrate the therapeutic potential of PSA hybrid nanofiber scaffold in promoting axonal growth and enhancing the functional recovery following SCI.
Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. And how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. However, in vivo therapeutic effect of PSA scaffolds towards SCI is still lack of evidence and needs to be further explored. In this study, a novel electrospun polycaprolactone/PSA scaffold loaded with methylprednisolone (MP) was developed to achieve efficient therapeutic effects towards SCI. And we believe that it broadens the application of PSA for SCI treatment.
支架组织工程广泛用于通过创建支持和引导神经元组织再生来治疗脊髓损伤 (SCI)。然而,如何增强 SCI 后的轴突再生能力仍然是一个挑战。聚唾液酸 (PSA) 是一种天然的、可生物降解的多糖,通过调节细胞黏附特性和促进轴突生长,越来越多地被探索用于控制中枢神经系统 (CNS) 的发育。在这里,开发了一种聚己内酯 (PCL)/PSA 杂化纳米纤维支架,其中包封了糖皮质激素甲基强的松龙 (MP),用于 SCI 治疗。建立了脊髓横断大鼠模型,并将 PCL/PSA/MP 支架移植到病变部位。PCL/PSA/MP 支架通过抑制离子钙结合接头分子 1 (Iba1) 阳性小胶质细胞/巨噬细胞的激活来减少肿瘤坏死因子-α (TNF-α) 和白细胞介素-6 (IL-6) 的释放,并减少凋亡相关的 Caspase-3 蛋白表达。此外,PCL/PSA/MP 支架抑制轴突脱髓鞘和胶质纤维酸性蛋白 (GFAP) 的表达,增加神经丝 200 (NF-200) 的表达,并通过 Basso、Beattie 和 Bresnahan (BBB) 测试改善功能恢复。这些结果表明 PSA 杂化纳米纤维支架在促进 SCI 后轴突生长和增强功能恢复方面具有治疗潜力。
支架组织工程广泛用于通过创建支持和引导神经元组织再生来治疗脊髓损伤 (SCI)。然而,如何增强 SCI 后的轴突再生能力仍然是一个挑战。聚唾液酸 (PSA) 是一种天然的、可生物降解的多糖,通过调节细胞黏附特性和促进轴突生长,越来越多地被探索用于控制中枢神经系统 (CNS) 的发育。然而,PSA 支架对 SCI 的体内治疗效果仍缺乏证据,需要进一步探索。在这项研究中,开发了一种新型静电纺聚己内酯/PSA 支架,其中负载有甲基强的松龙 (MP),以实现对 SCI 的有效治疗效果。我们相信,这拓宽了 PSA 用于 SCI 治疗的应用。