Suppr超能文献

利用重症监护数据库预测 感染的住院死亡率:一种大数据驱动的机器学习方法。

Prediction of in-hospital mortality of infection using critical care database: a big data-driven, machine learning approach.

机构信息

Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

出版信息

BMJ Open Gastroenterol. 2021 Nov;8(1). doi: 10.1136/bmjgast-2021-000761.

Abstract

RESEARCH OBJECTIVES

infection (CDI) is a major cause of healthcare-associated diarrhoea with high mortality. There is a lack of validated predictors for severe outcomes in CDI. The aim of this study is to derive and validate a clinical prediction tool for CDI in-hospital mortality using a large critical care database.

METHODOLOGY

The demographics, clinical parameters, laboratory results and mortality of CDI were extracted from the Medical Information Mart for Intensive Care-III (MIMIC-III) database. We subsequently trained three machine learning models: logistic regression (LR), random forest (RF) and gradient boosting machine (GBM) to predict in-hospital mortality. The individual performances of the models were compared against current severity scores (Clostridiodes difficile Associated Risk of Death Score (CARDS) and ATLAS (Age, Treatment with systemic antibiotics, leukocyte count, Albumin and Serum creatinine as a measure of renal function) by calculating area under receiver operating curve (AUROC). We identified factors associated with higher mortality risk in each model.

SUMMARY OF RESULTS

From 61 532 intensive care unit stays in the MIMIC-III database, there were 1315 CDI cases. The mortality rate for CDI in the study cohort was 18.33%. AUROC was 0.69 (95% CI, 0.60 to 0.76) for LR, 0.71 (95% CI, 0.62 to 0.77) for RF and 0.72 (95% CI, 0.64 to 0.78) for GBM, while previously AUROC was 0.57 (95% CI, 0.51 to 0.65) for CARDS and 0.63 (95% CI, 0.54 to 0.70) for ATLAS. Albumin, lactate and bicarbonate were significant mortality factors for all the models. Free calcium, potassium, white blood cell, urea, platelet and mean blood pressure were present in at least two of the three models.

CONCLUSION

Our machine learning derived CDI in-hospital mortality prediction model identified pertinent factors that can assist critical care clinicians in identifying patients at high risk of dying from CDI.

摘要

研究目的

感染(CDI)是导致医疗相关性腹泻的主要原因,死亡率很高。目前缺乏针对 CDI 严重结局的有效预测指标。本研究旨在利用大型重症监护数据库,为 CDI 院内死亡率开发和验证一种临床预测工具。

方法

从医疗信息监护 III (MIMIC-III)数据库中提取 CDI 的人口统计学、临床参数、实验室结果和死亡率。随后,我们训练了三种机器学习模型:逻辑回归(LR)、随机森林(RF)和梯度提升机(GBM)来预测院内死亡率。通过计算接收者操作特征曲线(AUROC),比较了模型的个体表现与当前严重程度评分(艰难梭菌相关死亡风险评分(CARDS)和 ATLAS(年龄、全身性抗生素治疗、白细胞计数、白蛋白和血清肌酐作为肾功能指标)的比较。我们确定了每个模型中与更高死亡率相关的因素。

结果

从 MIMIC-III 数据库的 61532 例重症监护病房住院患者中,有 1315 例 CDI 病例。研究队列中 CDI 的死亡率为 18.33%。LR 的 AUROC 为 0.69(95%CI,0.60 至 0.76),RF 为 0.71(95%CI,0.62 至 0.77),GBM 为 0.72(95%CI,0.64 至 0.78),而之前 CARDS 的 AUROC 为 0.57(95%CI,0.51 至 0.65),ATLAS 为 0.63(95%CI,0.54 至 0.70)。白蛋白、乳酸和碳酸氢盐是所有模型的显著死亡因素。游离钙、钾、白细胞、尿素、血小板和平均血压至少存在于三种模型中的两种。

结论

我们的机器学习衍生的 CDI 院内死亡率预测模型确定了相关因素,这可以帮助重症监护临床医生识别出患有 CDI 死亡风险较高的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82c/8601086/599f53b85516/bmjgast-2021-000761f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验