文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的 MIMIC-IV 数据库中 ICU 心搏骤停患者院内死亡率预测模型:回顾性分析。

Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning.

机构信息

Department of Anesthesiology, Dazhou Central Hospital, No.56 Nanyuemiao Street, Tongchuan District, Dazhou, Sichuan, 635000, China.

Department of Anesthesiology, The Third Affiliated Hospital of Harbin Medical University, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150000, China.

出版信息

BMC Anesthesiol. 2023 May 25;23(1):178. doi: 10.1186/s12871-023-02138-5.


DOI:10.1186/s12871-023-02138-5
PMID:37231340
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10210383/
Abstract

BACKGROUND: Both in-hospital cardiac arrest (IHCA) and out-of-hospital cardiac arrest (OHCA) have higher incidence and lower survival rates. Predictors of in-hospital mortality for intensive care unit (ICU) admitted cardiac arrest (CA) patients remain unclear. METHODS: The Medical Information Mart for Intensive Care IV (MIMIC-IV) database was used to perform a retrospective study. Patients meeting the inclusion criteria were identified from the MIMIC-IV database and randomly divided into training set (n = 1206, 70%) and validation set (n = 516, 30%). Candidate predictors consisted of the demographics, comorbidity, vital signs, laboratory test results, scoring systems, and treatment information on the first day of ICU admission. Independent risk factors for in-hospital mortality were screened using the least absolute shrinkage and selection operator (LASSO) regression model and the extreme gradient boosting (XGBoost) in the training set. Multivariate logistic regression analysis was used to build prediction models in training set, and then validated in validation set. Discrimination, calibration and clinical utility of these models were compared using the area under the curve (AUC) of the receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis (DCA). After pairwise comparison, the best performing model was chosen to build a nomogram. RESULTS: Among the 1722 patients, in-hospital mortality was 53.95%. In both sets, the LASSO, XGBoost,the logistic regression(LR) model and the National Early Warning Score 2 (NEWS 2) models showed acceptable discrimination. In pairwise comparison, the prediction effectiveness was higher with the LASSO,XGBoost and LR models than the NEWS 2 model (p < 0.001). The LASSO,XGBoost and LR models also showed good calibration. The LASSO model was chosen as our final model for its higher net benefit and wider threshold range. And the LASSO model was presented as the nomogram. CONCLUSIONS: The LASSO model enabled good prediction of in-hospital mortality in ICU admission CA patients, which may be widely used in clinical decision-making.

摘要

背景:院内心搏骤停(IHCA)和院外心搏骤停(OHCA)的发生率更高,存活率更低。重症监护病房(ICU)收治的心搏骤停(CA)患者院内死亡的预测因素仍不清楚。

方法:使用医疗信息集市 IV(MIMIC-IV)数据库进行回顾性研究。从 MIMIC-IV 数据库中筛选出符合纳入标准的患者,并将其随机分为训练集(n=1206,70%)和验证集(n=516,30%)。候选预测因子包括 ICU 入院第一天的人口统计学、合并症、生命体征、实验室检查结果、评分系统和治疗信息。使用最小绝对收缩和选择算子(LASSO)回归模型和极端梯度增强(XGBoost)在训练集中筛选院内死亡的独立危险因素。使用多变量逻辑回归分析在训练集中构建预测模型,然后在验证集中验证。使用受试者工作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)比较这些模型的区分度、校准度和临床实用性。通过两两比较,选择表现最好的模型构建列线图。

结果:在 1722 名患者中,院内死亡率为 53.95%。在两组中,LASSO、XGBoost、逻辑回归(LR)模型和国家早期预警评分 2(NEWS 2)模型均表现出可接受的区分度。两两比较,LASSO、XGBoost 和 LR 模型的预测效果均优于 NEWS 2 模型(p<0.001)。LASSO、XGBoost 和 LR 模型也表现出良好的校准度。LASSO 模型因其更高的净收益和更宽的阈值范围而被选为最终模型。并以 LASSO 模型为代表构建了列线图。

结论:LASSO 模型能够很好地预测 ICU 收治 CA 患者的院内死亡率,可能广泛应用于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/d2784a98eae1/12871_2023_2138_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/1bb618a4a2e6/12871_2023_2138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/479832d86114/12871_2023_2138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/6ea9baf88b2b/12871_2023_2138_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/24d11bd16025/12871_2023_2138_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/e621e593b2d4/12871_2023_2138_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/b496485582d3/12871_2023_2138_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/18d74b6466f6/12871_2023_2138_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/a75331a22c4b/12871_2023_2138_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/d2784a98eae1/12871_2023_2138_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/1bb618a4a2e6/12871_2023_2138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/479832d86114/12871_2023_2138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/6ea9baf88b2b/12871_2023_2138_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/24d11bd16025/12871_2023_2138_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/e621e593b2d4/12871_2023_2138_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/b496485582d3/12871_2023_2138_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/18d74b6466f6/12871_2023_2138_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/a75331a22c4b/12871_2023_2138_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbad/10210383/d2784a98eae1/12871_2023_2138_Fig9_HTML.jpg

相似文献

[1]
Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning.

BMC Anesthesiol. 2023-5-25

[2]
Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.

BMJ Open. 2021-7-23

[3]
Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.

Ann Med. 2024-12

[4]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[5]
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.

BMC Med Inform Decis Mak. 2020-10-2

[6]
Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU.

Int J Med Inform. 2023-6

[7]
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-7

[8]
Development of a novel tool: a nomogram for predicting in-hospital mortality of patients in intensive care unit after percutaneous coronary intervention.

BMC Anesthesiol. 2023-1-6

[9]
An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease.

Respir Res. 2024-6-18

[10]
[Development and validation of a prognostic model for patients with sepsis in intensive care unit].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-8

引用本文的文献

[1]
The association between the severity of out-of-hospital cardiac arrest and the effectiveness of target temperature management: a retrospective study based on prediction models.

Int J Emerg Med. 2025-8-19

[2]
Prediction model of in-hospital mortality risk in intensive care unit patients with cardiac arrest: a multicenter retrospective cohort study based on an ensemble model.

Front Cardiovasc Med. 2025-5-20

[3]
Development and Validation of a Nomogram Prediction Model for In-hospital Mortality in Patients with Cardiac Arrest: A Retrospective Study.

Rev Cardiovasc Med. 2025-4-10

[4]
Observational Study of Microbial Colonization and Infection in Neurological Intensive Care Patients Based on Electronic Health Records.

Biomedicines. 2025-4-2

[5]
Construction and validation of prognostic model for ICU mortality in cardiac arrest patients: an interpretable machine learning modeling approach.

Eur J Med Res. 2025-4-24

[6]
In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.

Health Data Sci. 2025-3-17

[7]
Development and validation of machine learning-based prediction model for outcome of cardiac arrest in intensive care units.

Sci Rep. 2025-3-13

[8]
Study on influencing factors of age-adjusted Charlson comorbidity index in patients with Alzheimer's disease based on machine learning model.

Front Med (Lausanne). 2025-1-27

[9]
Early prediction cardiac arrest in intensive care units: the value of laboratory indicator trends.

World J Emerg Med. 2025

[10]
Exploring Predictive Factors for Heart Failure Progression in Hypertensive Patients Based on Medical Diagnosis Data from the MIMIC-IV Database.

Bioengineering (Basel). 2024-5-23

本文引用的文献

[1]
Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations.

Comput Methods Programs Biomed. 2022-10

[2]
Epinephrine versus norepinephrine in cardiac arrest patients with post-resuscitation shock.

Intensive Care Med. 2022-3

[3]
Predicting the Mortality and Readmission of In-Hospital Cardiac Arrest Patients With Electronic Health Records: A Machine Learning Approach.

J Med Internet Res. 2021-9-13

[4]
Brain Natriuretic Peptide as a Marker of Adverse Neurological Outcomes Among Survivors of Cardiac Arrest.

J Intensive Care Med. 2022-6

[5]
An Early Predictive Scoring Model for In-Hospital Cardiac Arrest of Emergent Hemodialysis Patients.

J Clin Med. 2021-7-22

[6]
Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.

J Korean Med Sci. 2021-7-19

[7]
The prognostic value of early lactate clearance for survival after out-of-hospital cardiac arrest.

Am J Emerg Med. 2021-8

[8]
Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm.

Crit Care. 2021-2-25

[9]
Association between mean arterial pressure and survival in patients after cardiac arrest with vasopressor support: a retrospective study.

Eur J Emerg Med. 2021-8-1

[10]
The association of pH values during the first 24 h with neurological status at hospital discharge and futility among patients with out-of-hospital cardiac arrest.

Resuscitation. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索