Suppr超能文献

用于上肢协调康复的软模块化外骨骼的路径规划与阻抗控制

Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.

作者信息

Liu Quan, Liu Yang, Li Yi, Zhu Chang, Meng Wei, Ai Qingsong, Xie Sheng Q

机构信息

School of Information Engineering, Wuhan University of Technology, Wuhan, China.

School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom.

出版信息

Front Neurorobot. 2021 Nov 1;15:745531. doi: 10.3389/fnbot.2021.745531. eCollection 2021.

Abstract

The coordinated rehabilitation of the upper limb is important for the recovery of the daily living abilities of stroke patients. However, the guidance of the joint coordination model is generally lacking in the current robot-assisted rehabilitation. Modular robots with soft joints can assist patients to perform coordinated training with safety and compliance. In this study, a novel coordinated path planning and impedance control method is proposed for the modular exoskeleton elbow-wrist rehabilitation robot driven by pneumatic artificial muscles (PAMs). A convolutional neural network-long short-term memory (CNN-LSTM) model is established to describe the coordination relationship of the upper limb joints, so as to generate adaptive trajectories conformed to the coordination laws. Guided by the planned trajectory, an impedance adjustment strategy is proposed to realize active training within a virtual coordinated tunnel to achieve the robot-assisted upper limb coordinated training. The experimental results showed that the CNN-LSTM hybrid neural network can effectively quantify the coordinated relationship between the upper limb joints, and the impedance control method ensures that the robotic assistance path is always in the virtual coordination tunnel, which can improve the movement coordination of the patient and enhance the rehabilitation effectiveness.

摘要

上肢的协同康复对于中风患者日常生活能力的恢复至关重要。然而,当前机器人辅助康复中普遍缺乏关节协调模型的指导。具有柔性关节的模块化机器人可以协助患者安全、合规地进行协同训练。在本研究中,针对由气动人工肌肉(PAM)驱动的模块化外骨骼肘腕康复机器人,提出了一种新颖的协同路径规划和阻抗控制方法。建立了卷积神经网络-长短期记忆(CNN-LSTM)模型来描述上肢关节的协调关系,从而生成符合协调规律的自适应轨迹。在规划轨迹的引导下,提出了一种阻抗调整策略,以实现在虚拟协同通道内的主动训练,从而实现机器人辅助的上肢协同训练。实验结果表明,CNN-LSTM混合神经网络能够有效地量化上肢关节之间的协调关系,阻抗控制方法确保机器人辅助路径始终处于虚拟协同通道内,可改善患者的运动协调性,提高康复效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6823/8591133/3591be7b4c31/fnbot-15-745531-g0001.jpg

相似文献

1
Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.
Front Neurorobot. 2021 Nov 1;15:745531. doi: 10.3389/fnbot.2021.745531. eCollection 2021.
2
Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
J Neuroeng Rehabil. 2017 Jun 12;14(1):55. doi: 10.1186/s12984-017-0254-x.
5
Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
Med Biol Eng Comput. 2024 Mar;62(3):883-899. doi: 10.1007/s11517-023-02974-0. Epub 2023 Dec 12.
7
Synergetic gait prediction and compliant control of SEA-driven knee exoskeleton for gait rehabilitation.
Front Bioeng Biotechnol. 2024 Jan 26;12:1358022. doi: 10.3389/fbioe.2024.1358022. eCollection 2024.
8
Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction.
Front Bioeng Biotechnol. 2024 Jan 3;11:1332689. doi: 10.3389/fbioe.2023.1332689. eCollection 2023.
9

引用本文的文献

1
Active, Actuated, and Assistive: a Scoping Review of Exoskeletons for the Hands and Wrists.
Can Prosthet Orthot J. 2024 Nov 8;7(1):43827. doi: 10.33137/cpoj.v7i1.43827. eCollection 2024.

本文引用的文献

1
A simple joint control pattern dominates performance of unconstrained arm movements of daily living tasks.
PLoS One. 2020 Jul 13;15(7):e0235813. doi: 10.1371/journal.pone.0235813. eCollection 2020.
2
Quantitative Assessment of Motor Function for Patients with a Stroke by an End-Effector Upper Limb Rehabilitation Robot.
Biomed Res Int. 2020 Apr 8;2020:5425741. doi: 10.1155/2020/5425741. eCollection 2020.
4
Feasibility of Robot-assisted Rehabilitation in Poststroke Recovery of Upper Limb Function Depending on the Severity.
Neurol Med Chir (Tokyo). 2020 Apr 15;60(4):217-222. doi: 10.2176/nmc.oa.2019-0268. Epub 2020 Mar 13.
5
Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
Sensors (Basel). 2020 Feb 18;20(4):1104. doi: 10.3390/s20041104.
7
Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
Front Neurorobot. 2019 Nov 29;13:99. doi: 10.3389/fnbot.2019.00099. eCollection 2019.
8
Hybrid position/force output feedback second-order sliding mode control for a prototype of an active orthosis used in back-assisted mobilization.
Med Biol Eng Comput. 2019 Sep;57(9):1843-1860. doi: 10.1007/s11517-019-01987-y. Epub 2019 Jun 17.
9
A Modified Reach-to-Grasp Task in a Supine Position Shows Coordination Between Elbow and Hand Movements After Stroke.
Front Neurol. 2019 May 8;10:408. doi: 10.3389/fneur.2019.00408. eCollection 2019.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验