Suppr超能文献

调整 COVID-19 血清流行率调查结果以考虑检测灵敏度和特异性。

Adjusting COVID-19 Seroprevalence Survey Results to Account for Test Sensitivity and Specificity.

出版信息

Am J Epidemiol. 2022 Mar 24;191(4):681-688. doi: 10.1093/aje/kwab273.

Abstract

Population-based seroprevalence surveys can provide useful estimates of the number of individuals previously infected with serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and still susceptible, as well as contribute to better estimates of the case-fatality rate and other measures of coronavirus disease 2019 (COVID-19) severity. No serological test is 100% accurate, however, and the standard correction that epidemiologists use to adjust estimates relies on estimates of the test sensitivity and specificity often based on small validation studies. We have developed a fully Bayesian approach to adjust observed prevalence estimates for sensitivity and specificity. Application to a seroprevalence survey conducted in New York State in 2020 demonstrates that this approach results in more realistic-and narrower-credible intervals than the standard sensitivity analysis using confidence interval endpoints. In addition, the model permits incorporating data on the geographical distribution of reported case counts to create informative priors on the cumulative incidence to produce estimates and credible intervals for smaller geographic areas than often can be precisely estimated with seroprevalence surveys.

摘要

基于人群的血清流行率调查可以提供有用的估计,了解以前感染过严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)且仍易感的个体数量,以及有助于更好地估计病死率和其他 2019 年冠状病毒病(COVID-19)严重程度的指标。然而,没有一种血清学检测是 100%准确的,而且流行病学家用来调整估计值的标准校正方法依赖于检测敏感性和特异性的估计值,这些估计值通常基于小规模验证研究。我们开发了一种完全贝叶斯方法来调整观察到的流行率估计值的敏感性和特异性。将该方法应用于 2020 年在纽约州进行的一项血清流行率调查表明,与使用置信区间端点的标准敏感性分析相比,该方法产生的结果更符合实际情况,可信区间更窄。此外,该模型允许纳入报告病例数的地理分布数据,以对累积发病率创建有用的先验信息,从而在比血清流行率调查更能精确估计的较小地理区域产生估计值和可信区间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验