Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Canada.
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.
PLoS One. 2021 Sep 23;16(9):e0257743. doi: 10.1371/journal.pone.0257743. eCollection 2021.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence studies bridge the gap left from case detection, to estimate the true burden of the COVID-19 pandemic. While multiple anti-SARS-CoV-2 immunoassays are available, no gold standard exists.
This serial cross-sectional study was conducted using plasma samples from 8999 healthy blood donors between April-September 2020. Each sample was tested by four assays: Abbott SARS-Cov-2 IgG assay, targeting nucleocapsid (Abbott-NP) and three in-house IgG ELISA assays (targeting spike glycoprotein, receptor binding domain, and nucleocapsid). Seroprevalence rates were compared using multiple composite reference standards and by a series of Bayesian Latent Class Models.
We found 13 unique diagnostic phenotypes; only 32 samples (0.4%) were positive by all assays. None of the individual assays resulted in seroprevalence increasing monotonically over time. In contrast, by using the results from all assays, the Bayesian Latent Class Model with informative priors predicted seroprevalence increased from 0.7% (95% credible interval (95% CrI); 0.4, 1.0%) in April/May to 0.7% (95% CrI 0.5, 1.1%) in June/July to 0.9% (95% CrI 0.5, 1.3) in August/September. Assay characteristics varied over time. Overall Spike had the highest sensitivity (93.5% (95% CrI 88.7, 97.3%), while the sensitivity of the Abbott-NP assay waned from 77.3% (95% CrI 58.7, 92.5%) in April/May to 64.4% (95% CrI 45.6, 83.0) by August/September.
Our results confirmed very low seroprevalence after the first wave in Canada. Given the dynamic nature of this pandemic, Bayesian Latent Class Models can be used to correct for imperfect test characteristics and waning IgG antibody signals.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)血清流行率研究填补了病例检测留下的空白,以估计 COVID-19 大流行的真实负担。虽然有多种抗 SARS-CoV-2 免疫测定法,但没有金标准。
本系列横断面研究使用了 2020 年 4 月至 9 月期间 8999 名健康献血者的血浆样本。每个样本均通过四种检测方法进行了检测:雅培 SARS-CoV-2 IgG 检测法,针对核衣壳(雅培-NP)和三种内部 IgG ELISA 检测法(针对刺突糖蛋白、受体结合域和核衣壳)。使用多种综合参考标准和一系列贝叶斯潜在类别模型比较了血清流行率。
我们发现了 13 种独特的诊断表型;只有 32 个样本(0.4%)通过所有检测方法呈阳性。没有一种单独的检测方法会导致血清流行率随时间单调增加。相反,通过使用所有检测方法的结果,具有信息先验的贝叶斯潜在类别模型预测血清流行率从 4 月/5 月的 0.7%(95%可信区间(95%CrI);0.4,1.0%)增加到 6 月/7 月的 0.7%(95%CrI 0.5,1.1%),再到 8 月/9 月的 0.9%(95%CrI 0.5,1.3)。检测方法的特征随时间变化。总体而言,Spike 的灵敏度最高(93.5%(95%CrI 88.7,97.3%)),而雅培-NP 检测方法的灵敏度从 4 月/5 月的 77.3%(95%CrI 58.7,92.5%)下降到 8 月/9 月的 64.4%(95%CrI 45.6,83.0%)。
我们的结果证实了加拿大第一波疫情后血清流行率非常低。鉴于这种大流行的动态性质,贝叶斯潜在类别模型可用于纠正不完善的检测特征和 IgG 抗体信号减弱的问题。