Duke Clinical Research Institute, 200 Morris Street, Office 6318, Durham, NC, 27701, USA.
Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
ESC Heart Fail. 2022 Feb;9(1):178-185. doi: 10.1002/ehf2.13709. Epub 2021 Nov 17.
We aimed to develop a risk prediction tool that incorporated both clinical events and worsening health status for patients with heart failure (HF) with reduced ejection fraction (HFrEF). Identifying patients with HFrEF at increased risk of a poor outcome may enable proactive interventions that improve outcomes.
We used data from a longitudinal HF registry, CHAMP-HF, to develop a risk prediction tool for poor outcomes over the next 6 months. A poor outcome was defined as death, an HF hospitalization, or a ≥20-point decrease (or decrease below 25) in 12-item Kansas City Cardiomyopathy Questionnaire (KCCQ-12) overall summary score. Among 4546 patients in CHAMP-HF, 1066 (23%) experienced a poor outcome within 6 months (1.3% death, 11% HF hospitalization, and 11% change in KCCQ-12). The model demonstrated moderate discrimination (c-index = 0.65) and excellent calibration with observed data. The following variables were associated with a poor outcome: age, race, education, New York Heart Association class, baseline KCCQ-12, atrial fibrillation, coronary disease, diabetes, chronic kidney disease, smoking, prior HF hospitalization, and systolic blood pressure. We also created a simplified model with a 0-10 score using six variables (New York Heart Association class, KCCQ-12, coronary disease, chronic kidney disease, prior HF hospitalization, and systolic blood pressure) with similar discrimination (c-index = 0.63). Patients scoring 0-3 were considered low risk (event rate <20%), 4-6 were considered intermediate risk (event rate 20-40%), and 7-10 were considered high risk (event rate >40%).
The PROMPT-HF risk model can identify outpatients with HFrEF at increased risk of poor outcomes, including clinical events and health status deterioration. With further validation, this model may help inform therapeutic decision making.
我们旨在开发一种风险预测工具,该工具结合了临床事件和射血分数降低的心力衰竭(HFrEF)患者健康状况恶化的情况。识别出发生不良结局风险增加的 HFrEF 患者,可能会促使采取改善结局的主动干预措施。
我们使用来自纵向心力衰竭登记处 CHAMP-HF 的数据,开发了一种预测未来 6 个月内不良结局的风险预测工具。不良结局定义为死亡、心力衰竭住院或 12 项堪萨斯城心肌病问卷(KCCQ-12)总综合评分下降 20 分以上(或下降至 25 分以下)。在 CHAMP-HF 中,4546 例患者中有 1066 例(23%)在 6 个月内发生不良结局(1.3%死亡,11%心力衰竭住院,11% KCCQ-12 变化)。该模型显示出中度区分度(c 指数=0.65),并且与观测数据高度吻合。以下变量与不良结局相关:年龄、种族、教育程度、纽约心脏协会分级、基线 KCCQ-12、心房颤动、冠状动脉疾病、糖尿病、慢性肾脏病、吸烟、心力衰竭既往住院史和收缩压。我们还创建了一个简化模型,使用六个变量(纽约心脏协会分级、KCCQ-12、冠状动脉疾病、慢性肾脏病、心力衰竭既往住院史和收缩压)创建了一个 0-10 分的评分,具有相似的区分度(c 指数=0.63)。得分 0-3 的患者被认为是低风险(事件发生率<20%),得分 4-6 的患者被认为是中风险(事件发生率 20-40%),得分 7-10 的患者被认为是高风险(事件发生率>40%)。
PROMPT-HF 风险模型可以识别出射血分数降低的心力衰竭患者,这些患者有发生不良结局的风险增加,包括临床事件和健康状况恶化。通过进一步验证,该模型可能有助于为治疗决策提供信息。