Buzzi Raphael M, Akeret Kevin, Schwendinger Nina, Klohs Jan, Vallelian Florence, Hugelshofer Michael, Schaer Dominik J
Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland.
Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland.
Free Radic Biol Med. 2022 Feb 1;179:277-287. doi: 10.1016/j.freeradbiomed.2021.11.011. Epub 2021 Nov 16.
After intracranial hemorrhage, heme is released from cell-free hemoglobin. This red blood cell component may drive secondary brain injury at the hematoma‒brain interface. This study aimed to generate a spatially resolved map of transcriptome-wide gene expression changes in the heme-exposed brain and to define the potential therapeutic activity of the heme-binding protein, hemopexin. We stereotactically injected saline, heme, or heme‒hemopexin into the striatum of C57BL/6J mice. After 24 h, we elucidated the two-dimensional spatial transcriptome by sequencing 21760 tissue-covered features, at a mean transcript coverage of 3849 genes per feature. In parallel, we studied the extravasation of systemically administered fluorescein isothiocyanate labeled (FITC)-dextran, magnetic resonance imaging features indicative of focal edema and perfusion, and neurological functions as translational correlates of heme toxicity. We defined a cerebral heme-response signature by performing bidimensional differential gene expression analysis, based on unsupervised clustering and manual segmentation of sequenced features. Heme exerted a consistent and dose-dependent proinflammatory activity in the brain, which occurred at minimal exposures, below the toxicity threshold for the induction of vascular leakage. We found dose-dependent regional divergence of proinflammatory heme signaling pathways, consistent with reactive astrocytosis and microglial activation. Co-injection of heme with hemopexin attenuated heme-induced gene expression changes and preserved the homeostatic microglia signature. Hemopexin also prevented heme-induced disruption of the blood‒brain barrier and radiological and functional signals of heme injury in the brain. In conclusion, we defined heme as a potent inflammatoxin that may drive secondary brain injury after intracerebral hemorrhage. Co-administration of hemopexin attenuated the heme-derived toxic effects on a molecular, cellular, and functional level, suggesting a translational therapeutic strategy.
颅内出血后,血红素从无细胞血红蛋白中释放出来。这种红细胞成分可能在血肿-脑界面引发继发性脑损伤。本研究旨在生成血红素暴露脑区转录组全基因表达变化的空间分辨图谱,并确定血红素结合蛋白血红素结合素的潜在治疗活性。我们通过立体定向将生理盐水、血红素或血红素-血红素结合素注入C57BL/6J小鼠的纹状体。24小时后,我们通过对21760个组织覆盖特征进行测序,平均每个特征的转录本覆盖率为3849个基因,阐明了二维空间转录组。同时,我们研究了全身注射异硫氰酸荧光素标记(FITC)-葡聚糖的外渗、指示局灶性水肿和灌注的磁共振成像特征以及作为血红素毒性转化相关性的神经功能。我们通过基于测序特征的无监督聚类和手动分割进行二维差异基因表达分析,定义了脑血红素反应特征。血红素在脑中发挥一致且剂量依赖性的促炎活性,这种活性在最低暴露水平时就会出现,低于诱导血管渗漏的毒性阈值。我们发现促炎血红素信号通路存在剂量依赖性区域差异,这与反应性星形胶质细胞增生和小胶质细胞激活一致。将血红素与血红素结合素共同注射可减弱血红素诱导的基因表达变化,并保留稳态小胶质细胞特征。血红素结合素还可防止血红素诱导的血脑屏障破坏以及脑中血红素损伤的放射学和功能信号。总之,我们将血红素定义为一种强效炎症毒素,可能在脑出血后引发继发性脑损伤。同时给予血红素结合素可在分子、细胞和功能水平上减弱血红素衍生的毒性作用,提示了一种转化治疗策略。