Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA.
Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
Nat Commun. 2024 Aug 29;15(1):7467. doi: 10.1038/s41467-024-51590-5.
Spatial omics technologies decipher functional components of complex organs at cellular and subcellular resolutions. We introduce Spatial Graph Fourier Transform (SpaGFT) and apply graph signal processing to a wide range of spatial omics profiling platforms to generate their interpretable representations. This representation supports spatially variable gene identification and improves gene expression imputation, outperforming existing tools in analyzing human and mouse spatial transcriptomics data. SpaGFT can identify immunological regions for B cell maturation in human lymph nodes Visium data and characterize variations in secondary follicles using in-house human tonsil CODEX data. Furthermore, it can be integrated seamlessly into other machine learning frameworks, enhancing accuracy in spatial domain identification, cell type annotation, and subcellular feature inference by up to 40%. Notably, SpaGFT detects rare subcellular organelles, such as Cajal bodies and Set1/COMPASS complexes, in high-resolution spatial proteomics data. This approach provides an explainable graph representation method for exploring tissue biology and function.
空间组学技术可在细胞和亚细胞分辨率下破译复杂器官的功能组件。我们引入了空间图傅里叶变换(SpaGFT),并将图信号处理应用于广泛的空间组学分析平台,以生成其可解释的表示。这种表示支持空间变量基因的识别,并改进了基因表达推断,在分析人类和小鼠空间转录组学数据方面优于现有工具。SpaGFT 可以在人类淋巴结 Visium 数据中识别 B 细胞成熟的免疫区域,并使用内部人类扁桃体 CODEX 数据来描述次级滤泡的变化。此外,它可以无缝集成到其他机器学习框架中,通过高达 40%的提升来提高空间域识别、细胞类型注释和亚细胞特征推断的准确性。值得注意的是,SpaGFT 在高分辨率空间蛋白质组学数据中检测到了罕见的亚细胞细胞器,如 Cajal 体和 Set1/COMPASS 复合物。这种方法为探索组织生物学和功能提供了一种可解释的图表示方法。