Department of CSA, DAV University Jalandhar, Jalandhar, India,
Psychiatr Danub. 2021 Fall;33(3):354-357. doi: 10.24869/psyd.2021.354.
The key characteristics of this study are to highlight the research trend pertaining to the use of machine learning in the diagnosis and management of neuropsychiatric conditions.
The last ten years (2011-2020) Scopus data related to the use of machine learning techniques in the diagnosis and management of neuropsychiatric disorders in human beings have been collected and examined using VOSviewer. The global internet trend for neuropsychiatric disorders and machine learning techniques during the observation period (1-Jan-2010 to 30-Nov-2020) has been also explored using Google Trend.
The mean values of the Google trend for neuropsychiatric disorders and machine learning are 52.09 and 40.00 respectively. Moreover, the correlation coefficient for the Google trend of USA, UK and the world found to be significantly (0.98) higher. Likewise, the mean values of web trend for USA, UK, and China are 42.17, 38.55, and 30.90. Additionally, the Google trend for the term 'machine learning' in the observation period (1-Jan-2010 to 30-Nov-2020) has been also explored.
It is observed that the researchers from the US (32.4%), UK (9.2%) and China (7.4%) are the prime contributors as far as mining and management of the neuropsychiatric disorders using machine learning is concerned. Moreover, the study revealed that neuropsychiatric disorders (seizure, eating, mood, sleep, conduct, and intellectual) need more attention as far as machine learning is concerned.
本研究的主要特点是强调使用机器学习诊断和治疗神经精神疾病的研究趋势。
收集并使用 Vosviewer 分析了过去十年(2011-2020 年)中有关在人类神经精神疾病的诊断和管理中使用机器学习技术的 Scopus 数据。还使用 Google Trends 探索了观察期间(2010 年 1 月 1 日至 2020 年 11 月 30 日)神经精神疾病和机器学习技术的全球互联网趋势。
神经精神疾病和机器学习的 Google 趋势平均值分别为 52.09 和 40.00。此外,发现美国、英国和世界的 Google 趋势的相关系数显著(0.98)更高。同样,美国、英国和中国的网络趋势平均值分别为 42.17、38.55 和 30.90。此外,还探索了观察期间(2010 年 1 月 1 日至 2020 年 11 月 30 日)中术语“机器学习”的 Google 趋势。
研究表明,就使用机器学习挖掘和管理神经精神疾病而言,美国(32.4%)、英国(9.2%)和中国(7.4%)的研究人员是主要贡献者。此外,研究表明,机器学习需要更多关注神经精神疾病(癫痫、进食、情绪、睡眠、行为和智力)。