Suppr超能文献

使用深度学习对治疗前计算机断层扫描进行端到端非小细胞肺癌预后评估

End-to-End Non-Small-Cell Lung Cancer Prognostication Using Deep Learning Applied to Pretreatment Computed Tomography.

作者信息

Torres Felipe Soares, Akbar Shazia, Raman Srinivas, Yasufuku Kazuhiro, Schmidt Carola, Hosny Ahmed, Baldauf-Lenschen Felix, Leighl Natasha B

机构信息

Joint Department of Medical Imaging, Toronto General Hospital, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.

Altis Labs, Inc, Toronto, ON, Canada.

出版信息

JCO Clin Cancer Inform. 2021 Oct;5:1141-1150. doi: 10.1200/CCI.21.00096.

Abstract

PURPOSE

Clinical TNM staging is a key prognostic factor for patients with lung cancer and is used to inform treatment and monitoring. Computed tomography (CT) plays a central role in defining the stage of disease. Deep learning applied to pretreatment CTs may offer additional, individualized prognostic information to facilitate more precise mortality risk prediction and stratification.

METHODS

We developed a fully automated imaging-based prognostication technique (IPRO) using deep learning to predict 1-year, 2-year, and 5-year mortality from pretreatment CTs of patients with stage I-IV lung cancer. Using six publicly available data sets from The Cancer Imaging Archive, we performed a retrospective five-fold cross-validation using pretreatment CTs of 1,689 patients, of whom 1,110 were diagnosed with non-small-cell lung cancer and had available TNM staging information. We compared the association of IPRO and TNM staging with patients' survival status and assessed an Ensemble risk score that combines IPRO and TNM staging. Finally, we evaluated IPRO's ability to stratify patients within TNM stages using hazard ratios (HRs) and Kaplan-Meier curves.

RESULTS

IPRO showed similar prognostic power (concordance index [C-index] 1-year: 0.72, 2-year: 0.70, 5-year: 0.68) compared with that of TNM staging (C-index 1-year: 0.71, 2-year: 0.71, 5-year: 0.70) in predicting 1-year, 2-year, and 5-year mortality. The Ensemble risk score yielded superior performance across all time points (C-index 1-year: 0.77, 2-year: 0.77, 5-year: 0.76). IPRO stratified patients within TNM stages, discriminating between highest- and lowest-risk quintiles in stages I (HR: 8.60), II (HR: 5.03), III (HR: 3.18), and IV (HR: 1.91).

CONCLUSION

Deep learning applied to pretreatment CT combined with TNM staging enhances prognostication and risk stratification in patients with lung cancer.

摘要

目的

临床TNM分期是肺癌患者的关键预后因素,用于指导治疗和监测。计算机断层扫描(CT)在确定疾病分期中起着核心作用。将深度学习应用于治疗前CT可能会提供额外的个体化预后信息,以促进更精确的死亡风险预测和分层。

方法

我们开发了一种基于深度学习的全自动影像预后技术(IPRO),用于从I-IV期肺癌患者的治疗前CT预测1年、2年和5年死亡率。使用来自癌症影像存档的六个公开可用数据集,我们对1689例患者的治疗前CT进行了回顾性五折交叉验证,其中1110例被诊断为非小细胞肺癌且有可用的TNM分期信息。我们比较了IPRO和TNM分期与患者生存状态的关联,并评估了结合IPRO和TNM分期的综合风险评分。最后,我们使用风险比(HR)和Kaplan-Meier曲线评估IPRO在TNM分期内对患者进行分层的能力。

结果

在预测1年、2年和5年死亡率方面,IPRO显示出与TNM分期相似的预后能力(一致性指数[C指数]1年:0.72,2年:0.70,5年:0.68)(C指数1年:0.71,2年:0.71,5年:0.70)。综合风险评分在所有时间点均表现出更好的性能(C指数1年:0.77,2年:0.77,5年:0.76)。IPRO在TNM分期内对患者进行分层,区分出I期(HR:8.60)、II期(HR:5.03)、III期(HR:3.18)和IV期(HR:1.91)中最高风险和最低风险的五分之一患者。

结论

将深度学习应用于治疗前CT并结合TNM分期可增强肺癌患者的预后评估和风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验