From the Department of Radiology (H.K., J.M.G., C.M.P.) and Department of Thoracic and Cardiovascular Surgery (Y.T.K.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (H.K., J.M.G., C.M.P.); Cancer Research Institute, Seoul National University, Seoul, Korea (J.M.G., Y.T.K., C.M.P.); and Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea (K.H.L.).
Radiology. 2020 Jul;296(1):216-224. doi: 10.1148/radiol.2020192764. Epub 2020 May 12.
Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all > .05). The model exhibited good calibration in all data sets ( > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 See also the editorial by Shaffer in this issue.
背景 深度学习模型有可能用于预测肺癌的预后,但模型输出作为独立的预后因素,必须与临床危险因素进行验证。目的 开发和验证一种基于术前 CT 的深度学习模型,以预测肺腺癌患者的无病生存。材料与方法 本回顾性研究中,一个深度学习模型被用来从术前 CT 检查中提取预后信息。训练、调整和内部验证数据集 1 包括 2009 年至 2015 年间切除的 T1-4N0M0 腺癌患者。数据集 2 用于外部验证,包括 2014 年切除的临床 T1-2aN0M0(I 期)腺癌患者。采用 Harrell C 指数评估判别能力,并与临床 T 分期进行比较。采用 Greenwood-Nam-D'Agostino 检验对模型进行校准。采用 Cox 回归分析对临床预后因素进行多变量调整,分析危险比(HR)。结果 数据集 1 中评估了 800 例患者(中位年龄 64 岁;四分位距 56-70 岁;450 例女性),数据集 2 中评估了 108 例患者(中位年龄 63 岁;四分位距 57-71 岁;60 例女性)。内部验证的 C 指数为 0.74-0.80,外部验证的 C 指数为 0.71-0.78,均与临床 T 分期相当(内部验证为 0.78,外部验证为 0.74;均>0.05)。在所有数据集,模型均显示出良好的校准(>0.05)。多变量 Cox 回归显示,模型输出是独立的预后因素(分类输出的 HR,内部验证为 2.5[95%置信区间{CI}:1.03,5.9;=0.04],外部验证为 3.6[95%CI:1.6,8.5;=0.003])。除了深度学习模型外,只有吸烟状况(HR,3.4;95%CI:1.4,8.5;=0.007)进一步有助于预测临床 I 期腺癌患者手术后的无病生存。结论 一种用于胸部 CT 的深度学习模型预测了接受手术治疗的临床 I 期肺腺癌患者的无病生存。©2020RSNA,见本期 Shaffer 编辑述评。