一种用于检测癌症生物标志物的基于感知的纳米传感器平台。

A perception-based nanosensor platform to detect cancer biomarkers.

作者信息

Yaari Zvi, Yang Yoona, Apfelbaum Elana, Cupo Christian, Settle Alex H, Cullen Quinlan, Cai Winson, Long Roche Kara, Levine Douglas A, Fleisher Martin, Ramanathan Lakshmi, Zheng Ming, Jagota Anand, Heller Daniel A

机构信息

Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA.

Lehigh University, Bethlehem, PA 18015, USA.

出版信息

Sci Adv. 2021 Nov 19;7(47):eabj0852. doi: 10.1126/sciadv.abj0852.

Abstract

Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.

摘要

传统的分子识别元件,如抗体,在开发用于某些技术(如植入式设备)的生物分子检测方法时存在问题。此外,抗体的开发和使用,尤其是对于高度多重化的应用,可能会缓慢且成本高昂。我们基于光学纳米传感器阵列开发了一个基于感知的平台,该平台利用机器学习算法来检测生物流体中的多种蛋白质生物标志物。我们在妇科癌症中展示了这个平台,妇科癌症通常在晚期才被诊断出来,导致生存率较低。我们研究了子宫灌洗样本中蛋白质生物标志物的检测,与血液相比,子宫灌洗样本中富含某些癌症标志物。我们发现该方法能够同时检测患者样本中的多种生物标志物,在癌症患者的子宫灌洗样本中F1分数约为0.95。这项工作证明了基于感知的系统在开发疾病生物标志物多重传感器方面的潜力,而无需特定的分子识别元件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/649a/8604403/90ba49055c4d/sciadv.abj0852-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索