Suppr超能文献

一种用于碳纳米管精确手性分选的盐驱动机制。

A salt-driven mechanism for precise chirality sorting of carbon nanotubes.

作者信息

Lyu Min, Li Cheng, Liu Yanzhao, Li Yan, Zheng Ming

机构信息

Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States.

出版信息

Sci Adv. 2025 Jul 11;11(28):eadx3958. doi: 10.1126/sciadv.adx3958.

Abstract

Sorting single-wall carbon nanotubes (SWCNTs) by chirality/handedness is of substantial scientific and technological importance. Existing sorting methods often lack simplicity, reproducibility and scalability. Here, we demonstrate a salt-driven SWCNT sorting mechanism that addresses these challenges. Various polyethylene glycol (PEG)/salt aqueous two-phase systems effectively modulate the top-phase partitioning of DNA-wrapped SWCNTs (DNA-SWCNTs) across a broad range of hydrophobicities, with cation composition markedly affecting top-phase partitioning in the order NH > K > Li > Na closely resembles the well-documented Hofmeister series. We designed PEG/salt systems with defined [K]:[Na] cation ratios to precisely regulate SWCNT partitioning, enabling one-step top-extraction of multiple single-chirality SWCNTs. The cation ratio parameter, determined in small-scale experiments, remains effective at scales 200 times larger, allowing one-step, milligram-scale separation of (-) (6,5) with record-high enantiomeric purity. In addition, we develop a salt-switching multistage bottom-extraction strategy to isolate (+) (6,5) enantiomer. Our method uses simple salts to provide an easy-to-implement, high-precision, scale-invariant, and cost-effective platform for routine SWCNT chirality sorting.

摘要

按手性对单壁碳纳米管(SWCNT)进行分类具有重大的科学和技术意义。现有的分类方法往往缺乏简便性、可重复性和可扩展性。在此,我们展示了一种盐驱动的SWCNT分类机制,该机制解决了这些挑战。各种聚乙二醇(PEG)/盐水两相系统能在广泛的疏水性范围内有效调节DNA包裹的SWCNT(DNA-SWCNT)在顶相中的分配情况,并发现阳离子组成对顶相分配有显著影响,其顺序为NH>K>Li>Na, 此顺序与有充分记录的霍夫迈斯特序列非常相似. 我们设计了具有特定[K]:[Na]阳离子比例(即阳离子比)的PEG/盐系统,以精确调节SWCNT的分配情况,从而能够一步从顶相提取多种单一手性的SWCNT. 在小规模实验中确定的阳离子比参数在规模大200倍的实验中仍然有效,从而能够以创纪录的高对映体纯度一步分离毫克级的(-)(6,5)单壁碳纳米管。此外,我们还开发了一种盐切换多级底相提取策略来分离(+)(6,5)对映体。我们的方法使用简单的盐,为常规的SWCNT手性分类提供了一个易于实施、高精度、规模不变且经济高效的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f45/12248291/24e0aa0d6fad/sciadv.adx3958-f1.jpg

相似文献

1
A salt-driven mechanism for precise chirality sorting of carbon nanotubes.
Sci Adv. 2025 Jul 11;11(28):eadx3958. doi: 10.1126/sciadv.adx3958.
2
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
7
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury.
Cochrane Database Syst Rev. 2016 Jul 1;7(7):CD011020. doi: 10.1002/14651858.CD011020.pub2.
8
Audit and feedback: effects on professional practice.
Cochrane Database Syst Rev. 2025 Mar 25;3(3):CD000259. doi: 10.1002/14651858.CD000259.pub4.
9
Actuator-Driven, Purge-Free Formaldehyde Gas Sensor Based on Single-Walled Carbon Nanotubes.
Nanomaterials (Basel). 2025 Jun 21;15(13):962. doi: 10.3390/nano15130962.
10
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.

引用本文的文献

本文引用的文献

1
Revisiting the driving force inducing phase separation in PEG-phosphate aqueous biphasic systems.
Faraday Discuss. 2024 Oct 25;253(0):181-192. doi: 10.1039/d4fd00058g.
2
Programming sp Quantum Defects along Carbon Nanotubes with Halogenated DNA.
J Am Chem Soc. 2024 Apr 3;146(13):8826-8831. doi: 10.1021/jacs.3c14784. Epub 2024 Mar 25.
3
Biotemplated precise assembly approach toward ultra-scaled high-performance electronics.
Nat Protoc. 2023 Oct;18(10):2975-2997. doi: 10.1038/s41596-023-00870-3. Epub 2023 Sep 5.
4
Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo.
Nat Chem Biol. 2023 Dec;19(12):1448-1457. doi: 10.1038/s41589-023-01364-9. Epub 2023 Jun 15.
5
Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography.
ACS Nano. 2023 May 9;17(9):8393-8402. doi: 10.1021/acsnano.2c12853. Epub 2023 Apr 24.
6
Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics.
ACS Cent Sci. 2022 Nov 23;8(11):1490-1505. doi: 10.1021/acscentsci.2c01038. Epub 2022 Nov 1.
7
Carbon nanotube transistors: Making electronics from molecules.
Science. 2022 Nov 18;378(6621):726-732. doi: 10.1126/science.abp8278. Epub 2022 Nov 17.
8
DNA-guided lattice remodeling of carbon nanotubes.
Science. 2022 Jul 29;377(6605):535-539. doi: 10.1126/science.abo4628. Epub 2022 Jul 28.
9
Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning.
Nat Biomed Eng. 2022 Mar;6(3):267-275. doi: 10.1038/s41551-022-00860-y. Epub 2022 Mar 17.
10
Machine Learning-Guided Systematic Search of DNA Sequences for Sorting Carbon Nanotubes.
ACS Nano. 2022 Mar 22;16(3):4705-4713. doi: 10.1021/acsnano.1c11448. Epub 2022 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验