IEEE J Biomed Health Inform. 2022 Apr;26(4):1660-1671. doi: 10.1109/JBHI.2021.3129462. Epub 2022 Apr 14.
Choroidal neovascularization (CNV) volume prediction has an important clinical significance to predict the therapeutic effect and schedule the follow-up. In this paper, we propose a Lesion Attention Maps-Guided Network (LamNet) to automatically predict the CNV volume of next follow-up visit after therapy based on 3-dimentional spectral-domain optical coherence tomography (SD-OCT) images. In particular, the backbone of LamNet is a 3D convolutional neural network (3D-CNN). In order to guide the network to focus on the local CNV lesion regions, we use CNV attention maps generated by an attention map generator to produce the multi-scale local context features. Then, the multi-scale of both local and global feature maps are fused to achieve the high-precision CNV volume prediction. In addition, we also design a synergistic multi-task predictor, in which a trend-consistent loss ensures that the change trend of the predicted CNV volume is consistent with the real change trend of the CNV volume. The experiments include a total of 541 SD-OCT cubes from 68 patients with two types of CNV captured by two different SD-OCT devices. The results demonstrate that LamNet can provide the reliable and accurate CNV volume prediction, which would further assist the clinical diagnosis and design the treatment options.
脉络膜新生血管(CNV)体积预测对预测治疗效果和安排随访具有重要的临床意义。在本文中,我们提出了一种病变注意图引导网络(LamNet),该网络基于三维谱域光学相干断层扫描(SD-OCT)图像,自动预测治疗后下一次随访的 CNV 体积。特别是,LamNet 的骨干网络是一个三维卷积神经网络(3D-CNN)。为了指导网络关注局部 CNV 病变区域,我们使用由注意力图生成器生成的 CNV 注意力图来产生多尺度局部上下文特征。然后,融合多尺度局部和全局特征图,以实现高精度的 CNV 体积预测。此外,我们还设计了一个协同多任务预测器,其中一致性损失确保了预测的 CNV 体积的变化趋势与 CNV 体积的真实变化趋势一致。实验共包括来自 68 名患者的两种类型的 CNV 的 541 个 SD-OCT 立方体,这些 CNV 由两种不同的 SD-OCT 设备采集。实验结果表明,LamNet 可以提供可靠和准确的 CNV 体积预测,这将进一步辅助临床诊断和制定治疗方案。