Suppr超能文献

多元分类技术和质谱分析作为纤维肌痛患者筛选工具。

Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia.

机构信息

Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil.

Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil.

出版信息

Sci Rep. 2021 Nov 19;11(1):22625. doi: 10.1038/s41598-021-02141-1.

Abstract

Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.

摘要

纤维肌痛是一种风湿性疾病,会导致慢性疼痛和其他症状,如抑郁和焦虑。尽管它很重要,但这种疾病的诊断仍然很复杂,医生需要对症状进行正确的临床解读。在这种情况下,研究使用质谱等化学工作技术来辅助筛选这种疾病的工具是合理的。在这项研究中,提出了一种分析方法,用于从通过纸喷雾电离进行质谱分析的血浆样本中检测纤维肌痛患者(n=20,10 个对照样本和 10 个纤维肌痛样本),并对光谱数据进行多元分类(无监督和有监督),此外还对可能与代谢组学相关的选定变量进行处理。主成分分析(PCA)的探索性分析和带有线性判别分析(SPA-LDA)的连续投影算法的有监督分析显示,两组样本的预测准确率均达到 100%,结果令人满意。这表明,这种技术组合可以用作纤维肌痛临床诊断开发的简单、可靠和快速工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c150/8604931/7b7a54839679/41598_2021_2141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验