Suppr超能文献

利用 GPS 衍生的动态环境暴露测量方法来考虑空间、时间和行为因素。

Accounting for space, time, and behavior using GPS derived dynamic measures of environmental exposure.

机构信息

Population Sciences, Beckman Research Institute, City of Hope, USA.

Population Sciences, Beckman Research Institute, City of Hope, USA.

出版信息

Health Place. 2023 Jan;79:102706. doi: 10.1016/j.healthplace.2021.102706. Epub 2021 Nov 18.

Abstract

Time-weighted spatial averaging approaches (TWSA) are an increasingly utilized method for calculating exposure using global positioning system (GPS) mobility data for health-related research. They can provide a time-weighted measure of exposure, or dose, to various environments or health hazards. However, little work has been done to compare existing methodologies, nor to assess how sensitive these methods are to mobility data inputs (e.g., walking vs driving), the type of environmental data being assessed as the exposure (e.g., continuous surfaces vs points of interest), and underlying point-pattern clustering of participants (e.g., if a person is highly mobile vs predominantly stationary). Here we contrast three TWSA approaches that have been previously used or recently introduced in the literature: Kernel Density Estimation (KDE), Density Ranking (DR), and Point Overlay (PO). We feed GPS and accelerometer data from 602 participants through each method to derive time-weighted activity spaces, comparing four mobility behaviors: all movement, stationary time, walking time, and in-vehicle time. We then calculate exposure values derived from the various TWSA activity spaces with four environmental layer data types (point, line, area, surface). Similarities and differences across TWSA derived exposures for the sample and between individuals are explored, and we discuss interpretation of TWSA outputs providing recommendations for researchers seeking to apply these methods to health-related studies.

摘要

时间加权空间平均方法(TWSA)是一种越来越多地用于使用全球定位系统(GPS)移动数据计算与健康相关的研究中暴露的方法。它们可以提供对各种环境或健康危害的时间加权暴露量或剂量的测量。然而,几乎没有工作来比较现有的方法,也没有评估这些方法对移动数据输入(例如,步行与驾驶)、作为暴露评估的环境数据类型(例如,连续表面与兴趣点)以及参与者的基础点模式聚类(例如,如果一个人高度移动与主要静止)的敏感性如何。在这里,我们对比了三种以前在文献中使用或最近引入的 TWSA 方法:核密度估计(KDE)、密度排序(DR)和点覆盖(PO)。我们通过每种方法为 602 名参与者提供 GPS 和加速度计数据,以得出时间加权活动空间,并比较四种移动行为:所有运动、静止时间、步行时间和车内时间。然后,我们使用四种环境层数据类型(点、线、面、表面)计算来自不同 TWSA 活动空间的暴露值。探索了样本和个体之间 TWSA 衍生暴露的相似性和差异,并讨论了 TWSA 输出的解释,为希望将这些方法应用于与健康相关研究的研究人员提供了建议。

相似文献

引用本文的文献

7
A review of geospatial exposure models and approaches for health data integration.地理空间暴露模型与健康数据整合方法综述。
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):131-148. doi: 10.1038/s41370-024-00712-8. Epub 2024 Sep 6.

本文引用的文献

6
The future of activity space and health research.活动空间与健康研究的未来。
Health Place. 2019 Jul;58:102131. doi: 10.1016/j.healthplace.2019.05.009. Epub 2019 Jul 31.
9
Spatial and Temporal Dynamics in Air Pollution Exposure Assessment.空气污染暴露评估中的时空动态
Int J Environ Res Public Health. 2018 Mar 20;15(3):558. doi: 10.3390/ijerph15030558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验