Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA.
Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA.
Am J Obstet Gynecol. 2022 May;226(5):708.e1-708.e13. doi: 10.1016/j.ajog.2021.11.1353. Epub 2021 Nov 18.
The intrinsic properties of pelvic soft tissues in women who do and do not sustain birth injuries are likely divergent. However, little is known about this. Rat pelvic floor muscles undergo protective pregnancy-induced structural adaptations-sarcomerogenesis and increase in intramuscular collagen content-that protect against birth injury.
We aimed to test the following hypotheses: (1) the increased mechanical load of a gravid uterus drives antepartum adaptations; (2) load-induced changes are sufficient to protect pelvic muscles from birth injury.
The independent effects of load uncoupled from the hormonal milieu of pregnancy were tested in 3- to 4-month-old Sprague-Dawley rats randomly divided into the following 4 groups, with N of 5 to 14 per group: (1) load/pregnancy hormones (controls), (2) load/pregnancy hormones, (3) reduced load/pregnancy hormones, and (4) load/pregnancy hormones. Mechanical load of a gravid uterus was simulated by weighing uterine horns with beads similar to fetal rat size and weight. A reduced load was achieved by unilateral pregnancy after unilateral uterine horn ligation. To assess the acute and chronic phases required for sarcomerogenesis, the rats were sacrificed at 4 hours or 21 days after bead loading. The coccygeus, iliocaudalis, pubocaudalis, and nonpelvic tibialis anterior musles were harvested for myofiber and sarcomere length measurements. The intramuscular collagen content was assessed using a hydroxyproline assay. An additional 20 load/pregnancy hormones rats underwent vaginal distention to determine whether the load-induced changes are sufficient to protect from mechanical muscle injury in response to parturition-associated strains of various magnitude. The data, compared using 2-way repeated measures analysis of variance followed by pairwise comparisons, are presented as mean±standard error of mean.
An acute increase in load resulted in significant pelvic floor muscle stretch, accompanied by an acute increase in sarcomere length compared with nonloaded control muscles (coccygeus: 2.69±0.03 vs 2.30±0.06 μm, respectively, P<.001; pubocaudalis: 2.71±0.04 vs 2.25±0.03 μm, respectively, P<.0001; and iliocaudalis: 2.80±0.06 vs 2.35±0.04 μm, respectively, P<.0001). After 21 days of sustained load, the sarcomeres returned to operational length in all pelvic muscles (P>.05). However, the myofibers remained significantly longer in the load/pregnancy hormones than the load/pregnancy hormones in coccygeus (13.33±0.94 vs 9.97±0.26 mm, respectively, P<.0001) and pubocaudalis (21.20±0.52 vs 19.52±0.34 mm, respectively, P<.04) and not different from load/pregnancy hormones (12.82±0.30 and 22.53±0.32 mm, respectively, P>.1), indicating that sustained load-induced sarcomerogenesis in these muscles. The intramuscular collagen content in the load/pregnancy hormones group was significantly greater relative to the controls in coccygeus (6.55±0.85 vs 3.11±0.47 μg/mg, respectively, P<.001) and pubocaudalis (5.93±0.79 vs 3.46±0.52 μg/mg, respectively, P<.05) and not different from load/pregnancy hormones (7.45±0.65 and 6.05±0.62 μg/mg, respectively, P>.5). The iliocaudalis required both mechanical and endocrine cues for sarcomerogenesis. The tibialis anterior was not affected by mechanical or endocrine alterations. Despite an equivalent extent of adaptations, load-induced changes were only partially protective against sarcomere hyperelongation.
Load induces plasticity of the intrinsic pelvic floor muscle components, which renders protection against mechanical birth injury. The protective effect, which varies between the individual muscles and strain magnitudes, is further augmented by the presence of pregnancy hormones. Maximizing the impact of mechanical load on the pelvic floor muscles during pregnancy, such as with specialized pelvic floor muscle stretching regimens, is a potentially actionable target for augmenting pregnancy-induced adaptations to decrease birth injury in women who may otherwise have incomplete antepartum muscle adaptations.
分娩损伤女性的骨盆软组织固有特性可能存在差异。然而,目前对此知之甚少。大鼠盆底肌在妊娠诱导的结构适应性方面表现出保护作用——肌节发生和肌内胶原含量增加——以防止分娩损伤。
我们旨在验证以下假设:(1)妊娠子宫的机械负荷增加导致产前适应性变化;(2)负荷诱导的变化足以保护骨盆肌肉免受分娩损伤。
将独立于妊娠激素环境的负荷作用在 3 至 4 个月龄的 Sprague-Dawley 大鼠中进行测试,随机分为以下 4 组,每组 N 为 5 至 14 只:(1)负荷/妊娠激素(对照组)、(2)负荷/妊娠激素、(3)负荷/妊娠激素和单侧子宫角结扎后的单侧妊娠(减少负荷)、(4)负荷/妊娠激素。通过用类似于胎鼠大小和重量的珠子加重子宫角来模拟妊娠子宫的机械负荷。通过单侧子宫角结扎后的单侧妊娠实现减少负荷。为了评估肌节发生的急性和慢性阶段,在珠负荷后 4 小时或 21 天处死大鼠。采集尾骨、髂尾肌、耻骨尾骨和非骨盆胫骨前肌进行肌纤维和肌节长度测量。使用羟脯氨酸测定法评估肌内胶原含量。另外 20 只负荷/妊娠激素大鼠接受阴道扩张,以确定负荷诱导的变化是否足以保护肌肉免受与分娩相关的各种大小的应变引起的机械性肌肉损伤。使用双向重复测量方差分析,然后进行两两比较,对数据进行比较,结果以均数±标准误差表示。
急性负荷导致盆底肌肉明显拉伸,与非负荷对照肌肉相比,肌节长度急性增加(尾骨:2.69±0.03 对 2.30±0.06 μm,P<.001;耻骨尾骨:2.71±0.04 对 2.25±0.03 μm,P<.0001;髂尾肌:2.80±0.06 对 2.35±0.04 μm,P<.0001)。持续负荷 21 天后,所有骨盆肌肉的肌节恢复到工作长度(P>.05)。然而,与负荷/妊娠激素相比,负荷/妊娠激素组的肌纤维在尾骨(13.33±0.94 对 9.97±0.26 mm,P<.0001)和耻骨尾骨(21.20±0.52 对 19.52±0.34 mm,P<.04)中仍明显更长,与负荷/妊娠激素无差异(12.82±0.30 和 22.53±0.32 mm,P>.1),表明这些肌肉中的持续负荷诱导肌节发生。负荷/妊娠激素组的肌内胶原含量与对照组相比在尾骨(6.55±0.85 对 3.11±0.47 μg/mg,P<.001)和耻骨尾骨(5.93±0.79 对 3.46±0.52 μg/mg,P<.05)中显著增加,与负荷/妊娠激素无差异(7.45±0.65 和 6.05±0.62 μg/mg,P>.5)。髂尾肌需要机械和内分泌线索才能发生肌节发生。胫骨前肌不受机械或内分泌变化的影响。尽管适应性程度相同,但负荷诱导的变化仅部分保护肌节免受过度伸长。
负荷诱导骨盆底肌肉固有成分的可塑性,从而防止机械性分娩损伤。这种保护作用在个体肌肉和应变幅度之间存在差异,并且妊娠激素的存在进一步增强了这种作用。在妊娠期间最大限度地增加对盆底肌肉的机械负荷,例如采用专门的盆底肌肉伸展方案,可能是一种可行的目标,以增强妊娠诱导的适应性,减少可能存在不完全产前肌肉适应性的女性分娩损伤。