Suppr超能文献

中国空气污染监测:多源数据融合的近实时 PM 反演。

Tracking Air Pollution in China: Near Real-Time PM Retrievals from Multisource Data Fusion.

机构信息

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.

出版信息

Environ Sci Technol. 2021 Sep 7;55(17):12106-12115. doi: 10.1021/acs.est.1c01863. Epub 2021 Aug 18.

Abstract

Air pollution has altered the Earth's radiation balance, disturbed the ecosystem, and increased human morbidity and mortality. Accordingly, a full-coverage high-resolution air pollutant data set with timely updates and historical long-term records is essential to support both research and environmental management. Here, for the first time, we develop a near real-time air pollutant database known as Tracking Air Pollution in China (TAP, http://tapdata.org.cn/) that combines information from multiple data sources, including ground observations, satellite aerosol optical depth (AOD), operational chemical transport model simulations, and other ancillary data such as meteorological fields, land use data, population, and elevation. Daily full-coverage PM data at a spatial resolution of 10 km is our first near real-time product. The TAP PM is estimated based on a two-stage machine learning model coupled with the synthetic minority oversampling technique and a tree-based gap-filling method. Our model has an averaged out-of-bag cross-validation of 0.83 for different years, which is comparable to those of other studies, but improves its performance at high pollution levels and fills the gaps in missing AOD on daily scale. The full coverage and near real-time updates of the daily PM data allow us to track the day-to-day variations in PM concentrations over China in a timely manner. The long-term records of PM data since 2000 will also support policy assessments and health impact studies. The TAP PM data are publicly available through our website for sharing with the research and policy communities.

摘要

空气污染改变了地球的辐射平衡,扰乱了生态系统,增加了人类发病率和死亡率。因此,拥有一个全面覆盖、高分辨率、及时更新和具有长期历史记录的大气污染物数据集对于支持研究和环境管理都是至关重要的。在这里,我们首次开发了一个名为“追踪中国大气污染物(TAP,http://tapdata.org.cn/)”的近实时大气污染物数据库,该数据库结合了来自多个数据源的信息,包括地面观测、卫星气溶胶光学深度(AOD)、运行中的化学输送模型模拟以及其他辅助数据,如气象场、土地利用数据、人口和海拔。我们的第一个近实时产品是每日全覆盖、空间分辨率为 10km 的 PM 数据。TAP PM 是基于一个两阶段机器学习模型结合合成少数过采样技术和基于树的填补方法来估计的。我们的模型在不同年份的平均出袋交叉验证得分为 0.83,与其他研究相当,但在高污染水平下提高了性能,并填补了每日 AOD 缺失的空白。每日 PM 数据的全面覆盖和近实时更新使我们能够及时跟踪中国 PM 浓度的日常变化。自 2000 年以来的 PM 数据的长期记录也将支持政策评估和健康影响研究。TAP PM 数据通过我们的网站公开提供,以与研究和政策界共享。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验