EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; Functional Brain Mapping Lab, Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland.
Functional Brain Mapping Lab, Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland.
Clin Neurophysiol. 2022 Jan;133:58-67. doi: 10.1016/j.clinph.2021.10.008. Epub 2021 Nov 8.
To compare the spatial accuracy of 6 linear distributed inverse solutions for EEG source localisation of interictal epileptic discharges: Minimum Norm, Weighted Minimum Norm, Low-Resolution Electromagnetic Tomography (LORETA), Local Autoregressive Average (LAURA), Standardised LORETA, and Exact LORETA.
Spatial accuracy was assessed clinically by retrospectively comparing the maximum source of averaged interictal discharges to the resected brain area in 30 patients with successful epilepsy surgery, based on 204-channel EEG. Additionally, localisation errors of the inverse solutions were assessed in computer simulations, with different levels of noise added to the signal in both sensor space and source space.
In the clinical evaluations, the source maximum was located inside the resected brain area in 50-57% of patients when using LORETA or LAURA, while all other inverse solutions performed significantly worse (17-30%; corrected p < 0.01). In the simulation studies, when noise levels exceeded 10%, LORETA and LAURA had substantially smaller localisation errors than the other inverse solutions.
LORETA and LAURA provided the highest spatial accuracy both in clinical and simulated data, alongside with a comparably high robustness towards noise.
Among the different linear inverse solution algorithms tested, LORETA and LAURA might be preferred for interictal EEG source localisation.
比较 6 种线性分布式逆解在癫痫发作间期癫痫放电源定位中的空间精度:最小范数、加权最小范数、低分辨率电磁层析成像(LORETA)、局部自回归平均(LAURA)、标准化 LORETA 和精确 LORETA。
通过回顾性比较 30 例成功行癫痫手术患者的 204 通道 EEG 平均发作间期放电的最大源与切除脑区,评估临床空间精度。此外,还在计算机模拟中评估了逆解的定位误差,在传感器空间和源空间中分别对信号添加不同水平的噪声。
在临床评估中,当使用 LORETA 或 LAURA 时,50-57%的患者源最大值位于切除脑区内,而所有其他逆解的性能明显更差(17-30%;校正后 p<0.01)。在模拟研究中,当噪声水平超过 10%时,LORETA 和 LAURA 的定位误差明显小于其他逆解。
LORETA 和 LAURA 在临床和模拟数据中均提供了最高的空间精度,并且对噪声具有较高的稳健性。
在测试的不同线性逆解算法中,LORETA 和 LAURA 可能更适合于发作间期 EEG 源定位。