Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
Physiol Plant. 2022 Jan;174(1):e13602. doi: 10.1111/ppl.13602. Epub 2021 Dec 3.
Carbohydrates are direct products of photosynthetic CO assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
碳水化合物是光合作用 CO 同化的直接产物。在不断变化的温度条件下,光合作用和碳水化合物代谢都需要紧密调节,以防止植物组织不可逆损伤,并维持能量代谢、生长和发育。由于气候变化,植物将面临长期和短期的温度变化,且变化幅度越来越大。特别是突然的波动,可能包括从低温到高温的大温度幅度,这对从细胞到生态系统水平的植物构成了挑战。在这种波动的环境条件下,详细了解将光合作用和碳水化合物代谢联系起来的基本调节过程,对于估计气候变化的影响至关重要。此外,了解这些过程对于生物技术应用、育种和工程也很重要。环境光和温度条件由包含光受体和生物钟分子成分的分子网络感知。光合作用效率和植物生产力然后关键取决于酶调节和调节电路,这些电路将植物细胞与其环境连接起来,并在温度诱导的偏离后重新稳定光合作用效率和碳水化合物代谢。本综述总结和整合了关于在温度(热和冷)变化后重新稳定光合作用和碳水化合物代谢的最新知识。