Sun Yan, Li Chunsheng, Yang Chen, Dai Guoliang, Li Lin, Hu Zhe, Wang Didi, Liang Yaru, Li Yuanliang, Wang Yunxiao, Xu Yanfei, Zhao Yuzhen, Liu Huakun, Chou Shulei, Zhu Zhu, Wang Miaomiao, Zhu Jiahao
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, 215009, P.R. China.
Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an, 710123, P.R. China.
Adv Sci (Weinh). 2022 Jan;9(3):e2103493. doi: 10.1002/advs.202103493. Epub 2021 Nov 21.
The investigation of novel growth mechanisms for electrodes and the understanding of their in situ energy storage mechanisms remains major challenges in rechargeable lithium-ion batteries. Herein, a novel mechanism for the growth of high-purity diversified Li VO nanostructures (including hollow nanospheres, uniform nanoflowers, dispersed hollow nanocubes, and ultrafine nanowires) has been developed via a microwave irradiation strategy. In situ synchrotron X-ray diffraction and in situ transmission electron microscope observations are applied to gain deep insight into the intermediate Li VO and Li VO phases during the lithiation/delithiation mechanism. The first-principle calculations show that lithium ions migrate into the nanosphere wall rapidly along the (100) plane. Furthermore, the Li VO hollow nanospheres deliver an outstanding reversible capacity (299.6 mAh g after 100 cycles) and excellent cycling stability (a capacity retention of 99.0% after 500 cycles) at 200 mA g . The unique nanostructure offers a high specific surface area and short diffusion path, leading to fast thermal/kinetic reaction behavior, and preventing undesirable volume expansion during long-term cycling.
探索电极的新型生长机制以及理解其原位储能机制仍是可充电锂离子电池领域的主要挑战。在此,通过微波辐照策略开发了一种生长高纯度多样化LiVO纳米结构(包括空心纳米球、均匀纳米花、分散的空心纳米立方体和超细纳米线)的新机制。应用原位同步加速器X射线衍射和原位透射电子显微镜观察,以深入了解锂化/脱锂机制过程中的中间LiVO和LiVO相。第一性原理计算表明,锂离子沿(100)平面快速迁移到纳米球壁中。此外,LiVO空心纳米球在200 mA g下具有出色的可逆容量(100次循环后为299.6 mAh g)和优异的循环稳定性(500次循环后容量保持率为99.0%)。独特的纳米结构提供了高比表面积和短扩散路径,导致快速的热/动力学反应行为,并防止长期循环过程中出现不良的体积膨胀。