Suppr超能文献

了解 COVID-19 大流行期间的活动能力构成要素。

Understanding components of mobility during the COVID-19 pandemic.

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

The Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210118. doi: 10.1098/rsta.2021.0118. Epub 2021 Nov 22.

Abstract

Travel restrictions have proven to be an effective strategy to control the spread of the COVID-19 epidemics, in part because they help delay disease propagation across territories. The question, however, as to how different types of travel behaviour, from commuting to holiday-related travel, contribute to the spread of infectious diseases remains open. Here, we address this issue by using factorization techniques to decompose the temporal network describing mobility flows throughout 2020 into interpretable components. Our results are based on two mobility datasets: the first is gathered from Danish mobile network operators; the second originates from the Facebook Data-For-Good project. We find that mobility patterns can be described as the aggregation of three mobility network components roughly corresponding to travel during workdays, weekends and holidays, respectively. We show that, across datasets, in periods of strict travel restrictions the component corresponding to workday travel decreases dramatically. Instead, the weekend component, increases. Finally, we study how each type of mobility (workday, weekend and holiday) contributes to epidemics spreading, by measuring how the effective distance, which quantifies how quickly a disease can travel between any two municipalities, changes across network components. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.

摘要

旅行限制已被证明是控制 COVID-19 疫情传播的有效策略,部分原因是它们有助于延迟疾病在各地的传播。然而,不同类型的旅行行为(从通勤到与假期相关的旅行)如何促进传染病的传播,这个问题仍然没有答案。在这里,我们通过使用分解技术将描述 2020 年全年流动情况的时间网络分解为可解释的成分,从而解决了这个问题。我们的结果基于两个移动数据集:第一个是从丹麦移动网络运营商收集的;第二个来自 Facebook Data-For-Good 项目。我们发现,移动模式可以描述为三个移动网络成分的聚合,分别对应工作日、周末和假期的旅行。我们表明,在数据集内,在严格的旅行限制期间,对应工作日旅行的成分急剧减少。相反,周末的成分增加了。最后,我们通过测量有效距离(量化疾病在任意两个城市之间传播的速度)如何在网络成分之间变化,研究每种类型的流动性(工作日、周末和假期)如何促进传染病的传播。本文是主题为“传染病监测的数据科学方法”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1492/8607152/855980098649/rsta20210118f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验