Suppr超能文献

多尺度移动模式与人类移动的限制

Multiscale mobility patterns and the restriction of human movement.

作者信息

Schindler Dominik J, Clarke Jonathan, Barahona Mauricio

机构信息

Department of Mathematics, Imperial College London, London SW7 2BX, UK.

出版信息

R Soc Open Sci. 2023 Oct 11;10(10):230405. doi: 10.1098/rsos.230405. eCollection 2023 Oct.

Abstract

From the perspective of human mobility, the COVID-19 pandemic constituted a natural experiment of enormous reach in space and time. Here, we analyse the inherent multiple scales of human mobility using Facebook Movement maps collected before and during the first UK lockdown. Firstly, we obtain the pre-lockdown UK mobility graph and employ multiscale community detection to extract, in an unsupervised manner, a set of robust partitions into flow communities at different levels of coarseness. The partitions so obtained capture intrinsic mobility scales with better coverage than nomenclature of territorial units for statistics (NUTS) regions, which suffer from mismatches between human mobility and administrative divisions. Furthermore, the flow communities in the fine-scale partition not only match well the UK travel to work areas but also capture mobility patterns beyond commuting to work. We also examine the evolution of mobility under lockdown and show that mobility first reverted towards fine-scale flow communities already found in the pre-lockdown data, and then expanded back towards coarser flow communities as restrictions were lifted. The improved coverage induced by lockdown is well captured by a linear decay shock model, which allows us to quantify regional differences in both the strength of the effect and the recovery time from the lockdown shock.

摘要

从人类流动性的角度来看,新冠疫情在时空上构成了一个范围巨大的自然实验。在此,我们利用英国首次封锁之前及期间收集的脸书移动地图,分析人类流动性固有的多尺度特征。首先,我们获取封锁前的英国流动性图,并采用多尺度社区检测方法,以无监督的方式提取出一组稳健的划分,将其划分为不同粗细程度的流动社区。如此获得的划分比统计用领土单位命名法(NUTS)区域能更好地覆盖固有流动性尺度,因为NUTS区域存在人类流动性与行政区划不匹配的问题。此外,精细尺度划分中的流动社区不仅与英国的上班出行区域匹配良好,还捕捉到了通勤上班之外的流动模式。我们还研究了封锁期间流动性的演变,结果表明,流动性首先向封锁前数据中已发现的精细尺度流动社区回归,然后随着限制措施的解除,又向更粗粒度的流动社区扩展。封锁引发的覆盖范围改善情况能很好地由线性衰减冲击模型捕捉,这使我们能够量化效应强度和从封锁冲击中恢复所需时间方面的区域差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5325/10565406/8018fa6bac65/rsos230405f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验