文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种有效的 N6-甲基腺苷相关长非编码 RNA 预后标志物,用于预测膀胱癌患者的预后。

An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer.

机构信息

Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.

Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.

出版信息

BMC Cancer. 2021 Nov 21;21(1):1256. doi: 10.1186/s12885-021-08981-4.


DOI:10.1186/s12885-021-08981-4
PMID:34802433
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8607649/
Abstract

BACKGROUND: Bladder cancer (BLCA) typically has a poor prognosis due to high relapse and metastasis rates. A growing body of evidence indicates that N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) play crucial roles in the progression of BLCA and the treatment response of patients with BLCA. Therefore, we conducted a comprehensive RNA-seq analysis of BLCA using data from The Cancer Genome Atlas (TCGA) to establish an m6A-related lncRNA prognostic signature (m6A-RLPS) for BLCA. METHODS: Consensus clustering analysis was used to investigate clusters of BLCA patients with varying prognoses. The least absolute shrinkage and selection operator Cox regression were used to develop the m6A-RLPS. The ESTIMATE and CIBERSORT algorithms were used to evaluate the immune composition. RESULTS: A total of 745 m6A-related lncRNAs were identified using Pearson correlation analysis (|R| > 0.4, p < 0.001). Fifty-one prognostic m6A-related lncRNAs were screened using univariate Cox regression analysis. Through consensus clustering analysis, patients were divided into two clusters (clusters 1 and 2) with different overall survival rates and tumor stages based on the differential expression of the lncRNAs. Enrichment analysis demonstrated that terms related to tumor biological processes and immune-related activities were increased in patient cluster 2, which was more likely to exhibit low survival rates. Nine m6A-related prognostic lncRNAs were finally determined and subsequently used to construct the m6A-RLPS, which was verified to be an independent predictor of prognosis using univariate and multivariate Cox regression analyses. Further, a nomogram based on age, tumor stage, and the m6A-RLPS was generated and showed high accuracy and reliability with respect to predicting the survival outcomes of BLCA patients. The prognostic signature was found to be strongly correlated to tumor-infiltrating immune cells and immune checkpoint expression. CONCLUSIONS: We established a novel m6A-RLPS with a favorable prognostic value for patients with BLCA. We believe that this prognostic signature can provide new insights into the tumorigenesis of BLCA and predict the treatment response in patients with BLCA.

摘要

背景:膀胱癌(BLCA)通常预后较差,因为复发和转移率较高。越来越多的证据表明,N6-甲基腺苷(m6A)和长非编码 RNA(lncRNA)在 BLCA 的进展和 BLCA 患者的治疗反应中发挥着关键作用。因此,我们使用来自癌症基因组图谱(TCGA)的数据对 BLCA 进行了全面的 RNA-seq 分析,以建立 BLCA 的 m6A 相关 lncRNA 预后特征(m6A-RLPS)。

方法:采用共识聚类分析研究预后不同的 BLCA 患者的聚类。采用最小绝对收缩和选择算子 Cox 回归建立 m6A-RLPS。采用 ESTIMATE 和 CIBERSORT 算法评估免疫成分。

结果:通过 Pearson 相关分析(|R|>0.4,p<0.001)鉴定出 745 个 m6A 相关 lncRNA。通过单因素 Cox 回归分析筛选出 51 个预后 m6A 相关 lncRNA。通过共识聚类分析,根据 lncRNA 的差异表达,将患者分为两个具有不同总生存率和肿瘤分期的聚类(聚类 1 和 2)。富集分析表明,患者聚类 2 中与肿瘤生物学过程和免疫相关活动相关的术语增加,患者聚类 2 更有可能表现出低生存率。最终确定了 9 个 m6A 相关预后 lncRNA,并随后用于构建 m6A-RLPS,单因素和多因素 Cox 回归分析验证其为预后的独立预测因子。进一步,基于年龄、肿瘤分期和 m6A-RLPS 生成了一个列线图,该列线图在预测 BLCA 患者的生存结果方面具有较高的准确性和可靠性。该预后特征与肿瘤浸润免疫细胞和免疫检查点表达密切相关。

结论:我们建立了一个新的 m6A-RLPS,对 BLCA 患者具有良好的预后价值。我们认为,该预后特征可为 BLCA 的肿瘤发生提供新的见解,并预测 BLCA 患者的治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/c94a5bd43e96/12885_2021_8981_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/82bf8c915972/12885_2021_8981_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/aa3b0babfb6b/12885_2021_8981_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/8c011bcbb43f/12885_2021_8981_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/bc18516eddcf/12885_2021_8981_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/653a5adfddda/12885_2021_8981_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/9369f919f354/12885_2021_8981_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/9793f672fa8c/12885_2021_8981_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/1f6a48c08c91/12885_2021_8981_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/2583aa67aa43/12885_2021_8981_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/c94a5bd43e96/12885_2021_8981_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/82bf8c915972/12885_2021_8981_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/aa3b0babfb6b/12885_2021_8981_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/8c011bcbb43f/12885_2021_8981_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/bc18516eddcf/12885_2021_8981_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/653a5adfddda/12885_2021_8981_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/9369f919f354/12885_2021_8981_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/9793f672fa8c/12885_2021_8981_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/1f6a48c08c91/12885_2021_8981_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/2583aa67aa43/12885_2021_8981_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b661/8607649/c94a5bd43e96/12885_2021_8981_Fig10_HTML.jpg

相似文献

[1]
An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer.

BMC Cancer. 2021-11-21

[2]
N6-Methyladenosine-Related Long Non-coding RNA Signature Associated With Prognosis and Immunotherapeutic Efficacy of Clear-Cell Renal Cell Carcinoma.

Front Genet. 2021-10-15

[3]
Integrated risk scores from N6-methyladenosine-related lncRNAs are potential biomarkers for predicting the overall survival of bladder cancer patients.

Front Genet. 2022-8-17

[4]
N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients.

Genes (Basel). 2021-8-31

[5]
m6A-immune-related lncRNA prognostic signature for predicting immune landscape and prognosis of bladder cancer.

J Transl Med. 2022-10-29

[6]
Analysis of N6-methyladenosine-related lncRNAs in the tumor immune microenvironment and their prognostic role in pancreatic cancer.

J Cancer Res Clin Oncol. 2022-7

[7]
N6-methyladenosine-related lncRNAs identified as potential biomarkers for predicting the overall survival of Asian gastric cancer patients.

BMC Cancer. 2022-7-1

[8]
Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer.

Front Oncol. 2023-3-29

[9]
Prognostic Value of N6-Methyladenosine-Related lncRNAs in Early-Stage Colorectal Cancer: Association With Immune Cell Infiltration and Chemotherapeutic Drug Sensitivity.

Front Mol Biosci. 2021-10-12

[10]
Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer.

BMC Cancer. 2022-6-8

引用本文的文献

[1]
Identification of N6-methyladenosine-associated ferroptosis biomarkers in cervical cancer.

Hereditas. 2025-4-7

[2]
A novel EMT-related risk score model for Uveal melanoma based on ZNF667-AS1 and AP005121.1.

J Cancer. 2025-1-1

[3]
Knowledge mapping and current trends of m6A methylation in the field of cancer.

Heliyon. 2024-2-18

[4]
RNA N-methyladenosine modifications in urological cancers: from mechanism to application.

Nat Rev Urol. 2024-8

[5]
Metabolic changes preceding bladder cancer occurrence among Korean men: a nested case-control study from the KCPS-II cohort.

Cancer Metab. 2023-12-5

[6]
Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer.

Hum Cell. 2023-7

[7]
Novel insights into the multifaceted roles of mA-modified LncRNAs in cancers: biological functions and therapeutic applications.

Biomark Res. 2023-4-17

[8]
Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses.

PLoS One. 2023

[9]
A Novel m7G-Related Gene Signature Predicts the Prognosis of Colon Cancer.

Cancers (Basel). 2022-11-10

[10]
Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy.

Comput Struct Biotechnol J. 2022-9-15

本文引用的文献

[1]
LncRNA KCNQ1OT1 Promotes Proliferation, Invasion and Metastasis of Prostate Cancer by Regulating miR-211-5p/CHI3L1 Pathway.

Onco Targets Ther. 2021-3-3

[2]
N6-methyladenine modification in noncoding RNAs and its function in cancer.

Biomark Res. 2020-11-10

[3]
Current Perspectives on Immunotherapy in the Peri-Operative Setting of Muscle-Infiltrating Bladder Cancer.

Front Oncol. 2020-10-21

[4]
N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives.

Biochem Pharmacol. 2020-12

[5]
LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1.

Cancer Gene Ther. 2021-4

[6]
Roles of N -methyladenosine (m A) RNA modifications in urological cancers.

J Cell Mol Med. 2020-9

[7]
LncRNA KCNQ1OT1 regulates the invasion and migration of hepatocellular carcinoma by acting on S1PR1 through miR-149.

Cancer Gene Ther. 2021-8

[8]
Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations.

Cancers (Basel). 2020-5-15

[9]
Non-coding RNA and immune-checkpoint inhibitors: friends or foes?

Immunotherapy. 2020-5

[10]
LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis.

Cell Death Dis. 2020-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索