Suppr超能文献

基于杂交水稻优化算法的灰狼优化器用于高维特征选择

Hybrid rice optimization algorithm inspired grey wolf optimizer for high-dimensional feature selection.

作者信息

Ye Zhiwei, Huang Ruoxuan, Zhou Wen, Wang Mingwei, Cai Ting, He Qiyi, Zhang Peng, Zhang Yuquan

机构信息

School of Computer Science, Hubei University of Technology, Wuhan, 430068, China.

Hubei Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):30741. doi: 10.1038/s41598-024-80648-z.

Abstract

Feature selection (FS) is a significant dimensionality reduction technique, which can effectively remove redundant features. Metaheuristic algorithms have been widely employed in FS, and have obtained satisfactory performance, among them, grey wolf optimizer (GWO) has received widespread attention. However, the GWO and its variants suffer from limited adaptability, poor diversity, and low accuracy when faced with high-dimensional data. The hybrid rice optimization (HRO) algorithm is an emerging metaheuristic algorithm derived from the hybrid heterosis and breeding mechanism in nature. It possesses a robust capacity to identify and converge towards optimal solutions. Therefore, a novel approach based on multi-strategy collaborative GWO combined with the HRO algorithm (HRO-GWO) for FS is proposed in this paper. The HRO-GWO algorithm is enhanced by four innovative strategies including dynamical regulation strategy and three search strategies. First, to improve the adaptability of GWO, the dynamical regulation strategy is devised for parameter optimization of GWO. Then, a multi-strategy co-evolution model inspired by HRO is designed, which utilizes neighborhood search, dual-crossover, and selfing techniques to bolster population diversity. Finally, the study develops a hybrid filter-wrapper framework incorporating chi-square and the HRO-GWO algorithm to efficiently select pertinent and informative feature subsets, enhancing the classification performance while conserving time. The performance of HRO-GWO has been rigorously assessed across benchmark functions and the effectiveness of the proposed framework has been evaluated on small-sample high-dimensional biomedical datasets. Our experimental findings demonstrate that the approach on the basis of HRO-GWO outperforms state-of-the-art methods.

摘要

特征选择(FS)是一种重要的降维技术,它可以有效地去除冗余特征。元启发式算法已广泛应用于特征选择,并取得了令人满意的性能,其中灰狼优化器(GWO)受到了广泛关注。然而,当面对高维数据时,GWO及其变体存在适应性有限、多样性差和准确性低的问题。杂交水稻优化(HRO)算法是一种基于自然界杂交优势和育种机制的新兴元启发式算法。它具有强大的识别能力和向最优解收敛的能力。因此,本文提出了一种基于多策略协同GWO并结合HRO算法(HRO-GWO)的特征选择新方法。HRO-GWO算法通过动态调节策略和三种搜索策略等四种创新策略得到增强。首先,为了提高GWO的适应性,设计了动态调节策略对GWO进行参数优化。然后,设计了一种受HRO启发的多策略协同进化模型,该模型利用邻域搜索、双交叉和自交技术来增强种群多样性。最后,该研究开发了一个结合卡方和HRO-GWO算法的混合过滤-包装框架,以有效地选择相关且信息丰富的特征子集,在节省时间的同时提高分类性能。在基准函数上对HRO-GWO的性能进行了严格评估,并在小样本高维生物医学数据集上评估了所提出框架的有效性。我们的实验结果表明,基于HRO-GWO的方法优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e579/11680854/272c7ed2972a/41598_2024_80648_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验