基于极端梯度提升辅助分组支持向量网络的新生儿哭声高效分类。

An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network.

机构信息

Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan.

Service Systems Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan.

出版信息

J Healthc Eng. 2021 Nov 11;2021:7517313. doi: 10.1155/2021/7517313. eCollection 2021.

Abstract

The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.

摘要

哭声是婴儿发出的响亮、高音调的语言交流。新生儿哭声的基频和共振频率非常高,具有某些突然的变化。此外,在短暂的单一话语中,哭声信号也具有浊音和清音的特征。大多数情况下,婴儿通过哭声与照顾者交流,有时,照顾者很难理解新生儿哭声的原因。因此,这项研究提出了一种新的工作,用于将新生儿哭声分为饥饿、睡眠和不适三组。对于每个哭声帧,通过声学特征工程提取十二个特征,并使用随机森林进行变量选择,以在十二个时域和频域特征中选择高度可区分的特征。然后,使用极端梯度提升分组支持向量网络进行新生儿哭声分类。实验结果表明,该方法可以有效地对三组不同的新生儿哭声进行分类。在大多数情况下,最好的实验结果显示平均准确率约为 91%,这表明了所提出的基于极端梯度提升的分组支持向量网络在新生儿哭声分类中的潜力。此外,该方法在识别这些情感哭声时的识别速度很快,约为 27 秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c27/8601804/f899c30d5672/JHE2021-7517313.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索