Suppr超能文献

基于多阈值分割和机器学习的方法来区分 COVID-19 与病毒性肺炎。

Multithreshold Segmentation and Machine Learning Based Approach to Differentiate COVID-19 from Viral Pneumonia.

机构信息

Department of Electronics and Communication Engineering, Geethanjali Institute of Science and Technology, Nellore, India.

Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil.

出版信息

Comput Intell Neurosci. 2022 Aug 20;2022:2728866. doi: 10.1155/2022/2728866. eCollection 2022.

Abstract

Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.

摘要

冠状病毒病(COVID-19)在全球范围内造成了前所未有的破坏和数百万人死亡。其传染性和致命性不可避免地给医生和医疗支持系统带来了挑战。目前正在使用逆转录-聚合酶链反应和其他方法进行临床诊断评估。胸部 X 光(CXR)和 CT 图像在筛查目的中得到了有效利用,可以提供有关受感染局部区域的相关数据。在这些动荡时期,使用 CXR 和 CT 进行自动筛查和诊断可能具有相当重要的意义。主要目标是探索一种简单的基于阈值的分割方法,以识别 CXR 图像中可能存在的感染区域,并研究基于强度、基于小波变换(WT)和基于 Laws 的纹理特征以及统计度量。然后使用随机森林(RF)进行进一步的特征选择策略,选择用于使用支持向量机(SVM)和随机森林(RF)创建机器学习(ML)表示的特征,以区分 COVID-19 和病毒性肺炎(VP)。获得的结果清楚地表明,两种病理学中的强度和基于 WT 的特征有所不同,使用 SVM 和 RF 分类器训练的组合特征可以更好地区分。如曲线下面积(AUC)为 0.97 和总体分类准确率为 0.9 等分类器性能指标表明,实施的方法在表征 COVID-19 和病毒性肺炎方面是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf9/9420061/c2cd509c0735/CIN2022-2728866.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验