Suppr超能文献

基于智能手机的哭声检测算法的开发与技术验证

Development and Technical Validation of a Smartphone-Based Cry Detection Algorithm.

作者信息

ZhuParris Ahnjili, Kruizinga Matthijs D, van Gent Max, Dessing Eva, Exadaktylos Vasileios, Doll Robert Jan, Stuurman Frederik E, Driessen Gertjan A, Cohen Adam F

机构信息

Centre for Human Drug Research, Leiden, Netherlands.

Juliana Children's Hospital, Haga Teaching Hospital, Hague, Netherlands.

出版信息

Front Pediatr. 2021 Apr 13;9:651356. doi: 10.3389/fped.2021.651356. eCollection 2021.

Abstract

The duration and frequency of crying of an infant can be indicative of its health. Manual tracking and labeling of crying is laborious, subjective, and sometimes inaccurate. The aim of this study was to develop and technically validate a smartphone-based algorithm able to automatically detect crying. For the development of the algorithm a training dataset containing 897 5-s clips of crying infants and 1,263 clips of non-crying infants and common domestic sounds was assembled from various online sources. OpenSMILE software was used to extract 1,591 audio features per audio clip. A random forest classifying algorithm was fitted to identify crying from non-crying in each audio clip. For the validation of the algorithm, an independent dataset consisting of real-life recordings of 15 infants was used. A 29-min audio clip was analyzed repeatedly and under differing circumstances to determine the intra- and inter- device repeatability and robustness of the algorithm. The algorithm obtained an accuracy of 94% in the training dataset and 99% in the validation dataset. The sensitivity in the validation dataset was 83%, with a specificity of 99% and a positive- and negative predictive value of 75 and 100%, respectively. Reliability of the algorithm appeared to be robust within- and across devices, and the performance was robust to distance from the sound source and barriers between the sound source and the microphone. The algorithm was accurate in detecting cry duration and was robust to various changes in ambient settings.

摘要

婴儿啼哭的时长和频率能够表明其健康状况。人工追踪和标记啼哭既费力、主观,有时还不准确。本研究的目的是开发并在技术上验证一种基于智能手机的算法,该算法能够自动检测啼哭。为了开发该算法,从各种在线来源收集了一个训练数据集,其中包含897个5秒的啼哭婴儿音频片段、1263个非啼哭婴儿音频片段以及常见的家庭声音。使用OpenSMILE软件为每个音频片段提取1591个音频特征。采用随机森林分类算法来识别每个音频片段中的啼哭与非啼哭情况。为了验证该算法,使用了一个由15名婴儿的真实生活录音组成的独立数据集。对一个29分钟的音频片段在不同情况下进行反复分析,以确定该算法在设备内部和设备之间的可重复性以及稳健性。该算法在训练数据集中的准确率为94%,在验证数据集中的准确率为99%。验证数据集中的灵敏度为83%,特异性为99%,阳性预测值和阴性预测值分别为75%和100%。该算法在设备内部和设备之间的可靠性似乎很强,并且其性能对于与声源的距离以及声源和麦克风之间的障碍物具有稳健性。该算法在检测啼哭时长方面很准确,并且对于环境设置的各种变化具有稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验