Uwaya Gloria, Gumede Njabulo Joyfull, Bisetty Krishna
Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000 South Africa.
Department of Chemistry, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, South Africa.
ACS Omega. 2021 Nov 3;6(45):30515-30525. doi: 10.1021/acsomega.1c03995. eCollection 2021 Nov 16.
The present work reports the electrocatalytic oxidation of the organochlorine pesticide endosulfan (EDS) using iron oxide (FeO) nanoparticles synthesized from leaf extracts. As a sensor for EDS, FeO was combined with functionalized multiwalled carbon nanotubes (f-MWCNTs) on a glassy carbon electrode (GCE). Cyclic voltammetry, electrochemical impedance spectroscopy, and the differential pulse voltammetry experiment were conducted to investigate the electrochemistry of EDS on the GCE/f-MWCNT/FeO sensor. Based on optimized experimental conditions, the reports of analytical parameters show a limit of detection of 3.3 μM and an effective sensitivity of 0.06464 μA/μM over a range of concentrations from 0.1 to 20 μM. With the proposed method, we were able to demonstrate recoveries between 94 and 110% for EDS determinations in vegetables. Further, a series of computational modeling studies were carried out to better understand the EDS surface adsorption phenomenon on the GCE/f-MWCNT/FeO sensor. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap (-5.18 eV) computed by density functional theory (DFT) supports the layer-by-layer electrode modification strategy's charge transfer and stability. Finally, transition state modeling was able to predict and confirm the mechanism of endosulfan oxidation.
本研究报道了利用从植物叶提取物合成的氧化铁(FeO)纳米颗粒对有机氯农药硫丹(EDS)进行电催化氧化。作为检测EDS的传感器,FeO与功能化多壁碳纳米管(f-MWCNTs)结合在玻碳电极(GCE)上。通过循环伏安法、电化学阻抗谱和差分脉冲伏安法实验研究了EDS在GCE/f-MWCNT/FeO传感器上的电化学行为。基于优化的实验条件,分析参数报告显示,在0.1至20 μM的浓度范围内,检测限为3.3 μM,有效灵敏度为0.06464 μA/μM。采用所提出的方法,我们能够证明在蔬菜中测定EDS的回收率在94%至110%之间。此外,还进行了一系列计算建模研究,以更好地理解EDS在GCE/f-MWCNT/FeO传感器上的表面吸附现象。通过密度泛函理论(DFT)计算得到的最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)能隙(-5.18 eV)支持了逐层电极修饰策略的电荷转移和稳定性。最后,过渡态建模能够预测并确认硫丹氧化的机理。