Integration of Single-Cell RNA- and CAGE-seq Reveals Tooth-Enriched Genes.

作者信息

Chiba Y, Yoshizaki K, Tian T, Miyazaki K, Martin D, Saito K, Yamada A, Fukumoto S

机构信息

Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.

Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.

出版信息

J Dent Res. 2021 Nov 20;101(5):220345211049785. doi: 10.1177/00220345211049785.

Abstract

Organ development is dictated by the regulation of genes preferentially expressed in tissues or cell types. Gene expression profiling and identification of specific genes in organs can provide insights into organogenesis. Therefore, genome-wide analysis is a powerful tool for clarifying the mechanisms of development during organogenesis as well as tooth development. Single-cell RNA sequencing (scRNA-seq) is a suitable tool for unraveling the gene expression profile of dental cells. Using scRNA-seq, we can obtain a large pool of information on gene expression; however, identification of functional genes, which are key molecules for tooth development, via this approach remains challenging. In the present study, we performed cap analysis of gene expression sequence (CAGE-seq) using mouse tooth germ to identify the genes preferentially expressed in teeth. The CAGE-seq counts short reads at the 5'-end of transcripts; therefore, this method can quantify the amount of transcripts without bias related to the transcript length. We hypothesized that this CAGE data set would be of great help for further understanding a gene expression profile through scRNA-seq. We aimed to identify the important genes involved in tooth development via bioinformatics analyses, using a combination of scRNA-seq and CAGE-seq. We obtained the scRNA-seq data set of 12,212 cells from postnatal day 1 mouse molars and the CAGE-seq data set from postnatal day 1 molars. scRNA-seq analysis revealed the spatiotemporal expression of cell type-specific genes, and CAGE-seq helped determine whether these genes are preferentially expressed in tooth or ubiquitously. Furthermore, we identified candidate genes as novel tooth-enriched and dental cell type-specific markers. Our results show that the integration of scRNA-seq and CAGE-seq highlights the genes important for tooth development among numerous gene expression profiles. These findings should contribute to resolving the mechanism of tooth development and establishing the basis for tooth regeneration in the future.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索