Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Department of Chemical Engineering and Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
Phys Chem Chem Phys. 2021 Dec 1;23(46):26451-26458. doi: 10.1039/d1cp04005g.
Some recent SARS-CoV-2 variants appear to have increased transmissibility compared to the original strain. An underlying mechanism could be the improved ability of the variants to bind receptors on the target cells and infect them. In this study, we provide atomic-level insights into the binding of the receptor binding domain (RBD) of the wild-type SARS-CoV-2 spike protein and its single (N501Y), double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants to the human ACE2 receptor. Using extensive all-atom molecular dynamics simulations and advanced free energy calculations, we estimate the associated binding affinities and binding hotspots. We observe significant secondary structural changes in the RBD of the mutants, which lead to different binding affinities. We find higher binding affinities for the double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants than for the wild type and the N501Y variant, which could contribute to the higher transmissibility of recent variants containing these mutations.
一些最近的 SARS-CoV-2 变体似乎比原始菌株具有更高的传染性。潜在的机制可能是变体能够更好地结合靶细胞上的受体并感染它们。在这项研究中,我们提供了关于野生型 SARS-CoV-2 刺突蛋白的受体结合域 (RBD)及其单一(N501Y)、双重(E484Q、L452R)和三重(N501Y、E484Q、L452R)突变变体与人 ACE2 受体结合的原子水平见解。使用广泛的全原子分子动力学模拟和先进的自由能计算,我们估计了相关的结合亲和力和结合热点。我们观察到突变体 RBD 中的二级结构发生了显著变化,导致结合亲和力不同。我们发现双突变(E484Q、L452R)和三重突变(N501Y、E484Q、L452R)变体的结合亲和力高于野生型和 N501Y 变体,这可能有助于含有这些突变的最近变体的更高传染性。