Wu Jianhua, Zhang Hong-Xing, Zhang Jilong
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
Phys Chem Chem Phys. 2023 Jan 18;25(3):2304-2319. doi: 10.1039/d2cp04349a.
Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.
自严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发COVID-19大流行以来,SARS-CoV-2通过获得基因组突变而发生进化,导致最近出现了几种相对于原始毒株具有更高传播性和感染性的SARS-CoV-2变体。一个潜在机制可能是突变体与受体蛋白结合并感染宿主细胞的能力增强。在这项工作中,我们进行了全原子分子动力学(MD)模拟,以研究SARS-CoV-2刺突蛋白的受体结合域(RBD)单突变(D614G)、双突变(D614G + L452R和D614G + N501Y)、三突变(D614G + N501Y + E484K)和四突变(D614G + N501Y + E484K + K417T)变体与宿主细胞中的人血管紧张素转换酶2(hACE2)受体蛋白的结合和相互作用。多种分析方法相结合,从多个角度阐明了突变的影响以及分子差异程度,包括动态相关运动、相互作用模式、主导运动、自由能景观以及hACE2与所有RBD变体之间静电势表面上的电荷分布。此外,使用MM/PBSA方法进行的自由能计算评估了这些RBD变体与hACE2之间的结合亲和力。结果表明,与D614G + N501Y + E484K + K417T、D614G + L452R、D614G + N501Y和D614G突变体相比,D614G + N501Y + E484K变体具有最低的自由能值(最高亲和力)。基于残基的能量分解还表明,突变位点残基对总结合能的能量贡献高度可变。本研究阐明的不同RBD变体与hACE2之间的相互作用机制将为针对新型SARS-CoV-2变体的药物开发提供一些见解。