Suppr超能文献

空化作用在短脉冲钬激光碎石术中结石粉化中起着至关重要的作用。

Cavitation Plays a Vital Role in Stone Dusting During Short Pulse Holmium:YAG Laser Lithotripsy.

机构信息

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.

Division of Urology, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

J Endourol. 2022 May;36(5):674-683. doi: 10.1089/end.2021.0526. Epub 2022 Apr 29.

Abstract

To investigate the mechanism of stone dusting in Holmium (Ho): YAG laser lithotripsy (LL). Cylindrical BegoStone samples (6 × 6 mm, H × D) were treated in water using a clinical Ho:YAG laser lithotripter in dusting mode (0.2-0.4 J with 70-78 μs in pulse duration, 20 Hz) at various fiber tip to stone standoff distances (SD = 0, 0.5, and 1 mm). Stone damage craters were quantified by optical coherence tomography and bubble dynamics were captured by high-speed video imaging. To differentiate the contribution of cavitation thermal ablation to stone damage, three additional experiments were performed. First, presoaked wet stones were treated in air to assess stone damage without cavitation. Second, the laser fiber was advanced at various offset distances (OSD = 0.25, 1, 2, 3, and 10 mm) from the tip of a flexible ureteroscope to alter the dynamics of bubble collapse. Third, stones were treated with parallel fiber to minimize photothermal damage while isolating the contribution of cavitation to stone damage. Treatment in water resulted in 2.5- to 90-fold increase in stone damage compared with those produced in air where thermal ablation dominates. With the fiber tip placed at OSD = 0.25 mm, the collapse of the bubble was distracted away from the stone surface by the ureteroscope tip, leading to significantly reduced stone damage compared with treatment without the scope or with scope at large OSD of 3-10 mm. The average crater volume produced by parallel fiber orientation at 0.2 J after 100 pulses, where cavitation is the dominant mechanism of stone damage, was comparable with those produced by using perpendicular fiber orientation within SD = 0.25-1 mm. Cavitation plays a dominant role over photothermal ablation in stone dusting during short pulse Ho:YAG LL when 10 or more pulses are delivered to the same location.

摘要

研究结石粉尘化在钬(Ho):YAG 激光碎石术(LL)中的作用机制。使用临床 Ho:YAG 激光碎石机以粉尘化模式(脉冲持续时间为 0.2-0.4 J 和 70-78 μs,20 Hz)在水内处理圆柱形 BegoStone 样品(6×6 mm,H×D),光纤尖端与结石的不同间距(SD=0、0.5 和 1 mm)。通过光学相干断层扫描定量评估结石损伤坑,通过高速视频成像捕获气泡动力学。为了区分空化和热消融对结石损伤的贡献,进行了另外三项实验。首先,将预浸泡的湿结石在空气中处理,以评估无空化的结石损伤。其次,以不同的偏移距离(OSD=0.25、1、2、3 和 10 mm)将激光光纤推进到软性输尿管镜的尖端,以改变气泡崩溃的动力学。第三,使用平行光纤处理结石,以最小化光热损伤,同时将空化对结石损伤的贡献隔离。在水中进行处理时,与以热消融为主的空气中相比,结石损伤增加了 2.5 到 90 倍。当光纤尖端位于 OSD=0.25 mm 时,气泡的崩溃被输尿管镜尖端分散远离结石表面,导致与没有镜或镜与 3-10 mm 大 OSD 相比,结石损伤明显减少。在 100 个脉冲后以 0.2 J 进行平行光纤取向时产生的平均坑体积,其中空化是结石损伤的主要机制,与在 SD=0.25-1 mm 内使用垂直光纤取向产生的体积相当。当在同一位置输送 10 个或更多脉冲时,在短脉冲 Ho:YAG LL 中,空化在结石粉尘化中起主导作用,超过光热消融。

相似文献

1
Cavitation Plays a Vital Role in Stone Dusting During Short Pulse Holmium:YAG Laser Lithotripsy.
J Endourol. 2022 May;36(5):674-683. doi: 10.1089/end.2021.0526. Epub 2022 Apr 29.
3
Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.
Lasers Surg Med. 1999;25(1):22-37. doi: 10.1002/(sici)1096-9101(1999)25:1<22::aid-lsm4>3.0.co;2-6.
4
Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy.
Ultrason Sonochem. 2023 Dec;101:106649. doi: 10.1016/j.ultsonch.2023.106649. Epub 2023 Oct 15.
5
Mechanisms of Pulse Modulated Holmium:YAG Lithotripsy.
J Endourol. 2021 Dec;35(S3):S29-S36. doi: 10.1089/end.2021.0742.
7
The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
J Endourol. 2021 Jun;35(6):860-870. doi: 10.1089/end.2020.0349. Epub 2021 Mar 18.
8
Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy.
World J Urol. 2020 Feb;38(2):497-503. doi: 10.1007/s00345-019-02785-9. Epub 2019 May 4.
9
Dusting Efficiency of the Moses Holmium Laser: An Automated In Vitro Assessment.
J Endourol. 2018 Dec;32(12):1131-1135. doi: 10.1089/end.2018.0660. Epub 2018 Nov 16.

引用本文的文献

1
Vapour bubbles produced by long-pulsed laser: a race between advection and phase transition.
J Fluid Mech. 2024 Nov 25;999. doi: 10.1017/jfm.2024.989. Epub 2024 Nov 21.
3
2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform.
Ultrason Sonochem. 2024 Nov;110:107051. doi: 10.1016/j.ultsonch.2024.107051. Epub 2024 Aug 31.
4
Three-Dimensional Super-Resolution Passive Cavitation Mapping in Laser Lithotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1690-1700. doi: 10.1109/TUFFC.2024.3443781. Epub 2025 Jan 8.
7
Development of an optically transparent kidney model for laser lithotripsy research.
BJU Int. 2023 Jul;132(1):36-39. doi: 10.1111/bju.16015. Epub 2023 Apr 17.
8
Model-based simulations of pulsed laser ablation using an embedded finite element method.
Int J Heat Mass Transf. 2023 May 1;204. doi: 10.1016/j.ijheatmasstransfer.2022.123843. Epub 2023 Jan 12.
10
Cavitation erosion by shockwave self-focusing of a single bubble.
Ultrason Sonochem. 2022 Nov;90:106131. doi: 10.1016/j.ultsonch.2022.106131. Epub 2022 Aug 22.

本文引用的文献

2
Laser Lithotripsy: The Importance of Peak Power and Pulse Modulation.
Eur Urol Focus. 2021 Jan;7(1):22-25. doi: 10.1016/j.euf.2021.01.012. Epub 2021 Jan 30.
3
The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
J Endourol. 2021 Jun;35(6):860-870. doi: 10.1089/end.2020.0349. Epub 2021 Mar 18.
4
Polymer-Mineral Composites Mimic Human Kidney Stones in Laser Lithotripsy Experiments.
ACS Biomater Sci Eng. 2019 Oct 14;5(10):4970-4975. doi: 10.1021/acsbiomaterials.9b01130. Epub 2019 Sep 16.
5
Strike Rate: Analysis of Laser Fiber to Stone Distance During Different Modes of Laser Lithotripsy.
J Endourol. 2021 Mar;35(3):355-359. doi: 10.1089/end.2020.0298. Epub 2020 Jul 31.
6
Frequency Threshold for Ablation During Holmium Laser Lithotripsy: How High Can You Go?
J Endourol. 2020 Oct;34(10):1075-1081. doi: 10.1089/end.2020.0149. Epub 2020 Jul 20.
9
How much energy do we need to ablate 1 mm of stone during Ho:YAG laser lithotripsy? An in vitro study.
World J Urol. 2020 Nov;38(11):2945-2953. doi: 10.1007/s00345-020-03091-5. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验