Suppr超能文献

激光碎石术中的三维超分辨率被动空化映射

Three-Dimensional Super-Resolution Passive Cavitation Mapping in Laser Lithotripsy.

作者信息

Li Daiwei, Wang Nanchao, Li Mucong, Mishra Arpit, Tang Yuqi, Vu Tri, Xiang Gaoming, Chen Junqin, Lipkin Michael, Zhong Pei, Yao Junjie

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1690-1700. doi: 10.1109/TUFFC.2024.3443781. Epub 2025 Jan 8.

Abstract

Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed 3-D super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of m, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependent analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.

摘要

肾结石病是一个重大的公共卫生问题。通过重复激光照射破碎结石,激光碎石术(LL)已成为治疗肾结石病的主要方法。激光诱导的空化与激光碎石术中的结石损伤密切相关。因此,在激光碎石术中监测空化活动对于优化结石损伤和最大化激光碎石术效率至关重要。在本研究中,我们开发了三维超分辨率被动空化映射(3D-SRPCM),其中空化气泡位置的定位精度可达微米级,这是声衍射极限的十分之一。此外,通过采用基于图形处理器(GPU)的稀疏矩阵波束形成方法,三维超分辨率被动空化映射的重建速度提高了300倍。利用3D-SRPCM,我们研究了在水的自由空间和肾脏模型的受限空间中,激光碎石术对Bego结石诱导的空化活动。3D-SRPCM提供的剂量依赖性分析表明,结石表面的累积冲击压力与结石损伤的相关性最高。通过在激光碎石术治疗期间提供高分辨率的空化映射,我们期望3D-SRPCM可能成为提高临床激光碎石术效率和患者治疗效果的有力工具。

相似文献

1
Three-Dimensional Super-Resolution Passive Cavitation Mapping in Laser Lithotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1690-1700. doi: 10.1109/TUFFC.2024.3443781. Epub 2025 Jan 8.
2
Cavitation Plays a Vital Role in Stone Dusting During Short Pulse Holmium:YAG Laser Lithotripsy.
J Endourol. 2022 May;36(5):674-683. doi: 10.1089/end.2021.0526. Epub 2022 Apr 29.
3
The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
J Endourol. 2021 Jun;35(6):860-870. doi: 10.1089/end.2020.0349. Epub 2021 Mar 18.
4
Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy.
Ultrason Sonochem. 2023 Dec;101:106649. doi: 10.1016/j.ultsonch.2023.106649. Epub 2023 Oct 15.
5
Tri-modality cavitation mapping in shock wave lithotripsy.
J Acoust Soc Am. 2021 Feb;149(2):1258. doi: 10.1121/10.0003555.
7
The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
J Endourol. 2019 May;33(5):400-406. doi: 10.1089/end.2018.0516. Epub 2019 Feb 1.
8
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
Ultrasound Med Biol. 2002 May;28(5):661-71. doi: 10.1016/s0301-5629(02)00506-9.
9
Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1183-95. doi: 10.1121/1.1500754.

引用本文的文献

1
Ultrasound-Mediated Membrane Modulation for Biomedical Applications.
Nanomaterials (Basel). 2025 Jun 7;15(12):884. doi: 10.3390/nano15120884.

本文引用的文献

1
Development of an optically transparent kidney model for laser lithotripsy research.
BJU Int. 2023 Jul;132(1):36-39. doi: 10.1111/bju.16015. Epub 2023 Apr 17.
3
Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy.
Nat Biomed Eng. 2022 May;6(5):605-616. doi: 10.1038/s41551-021-00824-8. Epub 2022 Feb 17.
4
Cavitation Plays a Vital Role in Stone Dusting During Short Pulse Holmium:YAG Laser Lithotripsy.
J Endourol. 2022 May;36(5):674-683. doi: 10.1089/end.2021.0526. Epub 2022 Apr 29.
5
Tri-modality cavitation mapping in shock wave lithotripsy.
J Acoust Soc Am. 2021 Feb;149(2):1258. doi: 10.1121/10.0003555.
6
Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2361-2369. doi: 10.1109/TUFFC.2021.3062357. Epub 2021 Jun 29.
7
The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
J Endourol. 2021 Jun;35(6):860-870. doi: 10.1089/end.2020.0349. Epub 2021 Mar 18.
8
Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1184-1197. doi: 10.1109/TUFFC.2020.3035696. Epub 2021 Mar 26.
9
Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):647-663. doi: 10.1109/TUFFC.2020.3019573. Epub 2021 Feb 25.
10
Real-Time Passive Acoustic Mapping Using Sparse Matrix Multiplication.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):164-177. doi: 10.1109/TUFFC.2020.3001848. Epub 2020 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验